
TIC FILE CONa~sF~(

0) ADNB M=

MM M = NO. 7-(-R89-EPO-007

NN
I ~MHflOtLOGY IN4VESTIGATION

FINL PEFORT

OF

SOFWAE MAUTY MODEL VALIDATION

BY

KEN VAN KAMEN

Software and Interoperability Division
Electronic Technology Test Directorate

U.S. ARMY ErIcnIC PROVI GOND
FORE HUTAC UCA, ARIZONA 85613-7110

o. - SE I. -£

; "13 NOVEMEM 1989

Prepared for: Approve for public release;
U.S. Army Test and Evaluation Cumand distribution unlimited.
Aberdeen Proving Ground, MD 21005-5055

UN(SSIFIED

DISPOSITION INSTC=ONS

Destroy this report in accordance with appropriate regulations when no

longer needed. Do not return it to the originator.

DISCIAIMER

Information and data contained in this document are based on input
available at the time of preparation. Because the results may be subject to
chane, this document should not be onstrued to represent the official
position of the United States Army Materiel Ccmmand unless so stated.

The use of trade names in this report does not constitute an official
endorsement or approval of the use of such cnm-rcial hardware or software.
This report may not be cited for purposes of advertisement.

- -, *DEPARTMENT OF THE ARMY
NEADOUART!R& U.S. ARMY TEST AND EVALUATION COMMAND

ABERDEEN PROVING GROUND, MARYLAND 2100W- 5W

IE P Ly TO

AMSTE-TC-D (70-lop) 2 VAGW9

MEMORANDUM FOR Commander, U.S. Army Electronic Proving Ground,
ATTN: STEEP-CT-E (Mr. K. Karsen) , Fort Fuachuca,
AZ 85613-7110

SUBJECT: Methodology Investigation Final Report of Software
Maturity Model Validation, TECOM Project No. 7-CO-R89-EPO-007

1. Subject report is approved.

2. Point of contact at this headquarters is Mr. Richard V. Haire,
AMSTE-TC-D, amstetcd@apg-emh4.apg.army.mil, AV 298-3677/2170.

FOR THE COMMANDER:

/FREDERICK D. MABANTA
Chief, Tech Dev Div
Directorate for Technology

r7J9 i

A --

D.t t~

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMONo 0704-0188I Exp Date Jun 30. 1986

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION]AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONiTORING ORGANIZATION
US Army Electronic Proving (If applicable)

Ground ISTEEP-ET-S
6c. ADDRESS ('itv. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Fort Huachuca, Arizona 85613-7110

Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

US Army Test & Eval Cmd
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Aberdeen Proving Ground, MD 21005 ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (Include Security Classification)

Methodology Investigation of Software Maturity Model Validation

12. PERSONAL AUTHOR(S)
Ken Van Karsen
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Final I FROM TO 1990/11/13 78
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Software Test and Software Reliability

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

T is report covers phase I of an investigation to identify methods of
quantitatively assessing software reliability. A set of candidate software
reliability models were screened for potential use in estimating reliability
parameters. Other techniques were examined briefly. Finally, the various
methods were evaluated with respect to applicability during developmentaltesting.I

N
20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT E] DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Mr. Curtis Massie (602) 533-8204 STEEP-ET-S

00 FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

TABTE oF

PAGE

FOR WOR .o.. oo.-......... 1

SECION~ 1. S~~A'

1.1 BA N1 2
1.1 BA7OB UND 2
1.2 0 P O L K 6
1.3 OBJEC:E ... 6
1.4 PR E LRS 6
1.5 SL.TTS ... 7
1.6 ANALYSIS 8
1.7 CHN JSIONS ... 11
1.8 R~omNA~w..11

SECTION 2. DETAILS OF INVETIGATION

2.1 SURVEY OF SOFINA RELIABILITY MDES AND MEIH OGIES 13
2.1.1 Available Software Reliability Models 13
2.1.1.1 Software PerformanceParameter Assessment 13
2.1.1.1.1 SPPA Model Description 14
2.1.1.1.2 SPPA model Inputs 14
2.1.1.1.3 SPPA Model Outputs 14
2.1.1.2 SMERFS Interactive Software Package of Models 15
2.1.1.2.1 Motivation for SMERFS 15
2.1.1.2.2 Features of SMERFS 15
2.1.1.2.3 SMERFS Program Structure 15
2.1.1.2.4 Saple SMERFS Reliability Analysis 17
2.1.2 Other Approaches and Methodologies 24
2.1.2.1 Alternative Approach 24
2.1.2.1.1 Extent of Test Assessment 24
2.1.2.1.2 Software Change Analysis 24
2.1.2.1.3 Software Perforance Assessnt 28
2.1.2.1.4 Other Factors Affecting Software Maturity 28
2.1.2.2 Another Alternative Approach 28
2.1.2.2.1 Software Fault Tracking Methodology 28
2.1.2.2.2 Software Fault Analysis 28
2.1.2.3 AMC-P 70-14 Approach....................... 29
2.1.2.3.1 Fault Density 29
2.1.2.3.2 Test Coverage 29
2.1.2.3.3 Test Sufficiency 29

2.2 EVAITAGION OF THE MDDELS AND OHER MEHODS 29
2.2.1 Evaluation of SPPA ... 30
2.2.2 Evaluation of SMERFS .. 30
2.2.3 Evaluation of Other Approaches 30

SECTION 3.- APNDIxEs

A. METHIDOIOGY INESTIGAMON PROPOSAL A-I
B. REFE CES ... B-i
C. ACNYMS AND AB EVII NS C-i
D. SNEUS MODEIS D-iE. GLOSSARY o...E-1
F. DISTRIBUTIONo F-1

LIST OF TABLE

1. 5-I Software Reliability Models 8
1.5-11 SMEFS Reliability Models 9
1. 5-11 SMERFS Model Data Requirements I0................10

LIST OF FIGJRE

2.1-1 SMEFS Program Structure 16
2.1-2 SMERFS Main Menu 17
2.1-3 SMEUFS Data Input 19
2.1-4 SMERFS Summary Statistics --.............. 20
2.1-5 SMERFS Plots of the Raw Data 21
2.*1-6 SzMERFS Excution of the Mo~dels 22
2. 1-7 SMERFS Mo~del Estimation Proceures-.............. 23
2.1-8 SMERFS Chi-Square Statistic and Tabulated Data 25
2.1-9 SMERFS Model Fit of Data 26
2.1-10 SMERFS Plot of Residuals 27

D-i. 1 Menu for Execution Time Models D-
D-1.2 Menu for Interval Data Models D-2
D-2.1 IAVMDD Input Prompts D-4
D-2.2 IAVMDD Successful Convergence Output D-4
D-3.1 S[OJVD Input Prc:tpts D-6
D-3.2 MKJSY)D Successful Conrvergence Output D-7
D-4.1 G]O4OD Input Prompts D-9
D-4.2 GEO0D Sussful Convergence Output D-10D-5. 1. NPW Inputs Prcupts .. o..... ooo....-................... D-12
D-5.2 NPMM Successful :nvergence Output D-12
D-6.1 GPCMD Irpipt Prcrepts -............... D-15
D-6.2 GPCMOD Successful Convergence Output D-16D-7.1. NPIMOD} Inu P-raps o......-o... D-18
D-7 .2 NPIM:1 Successful onvergence Output -.... o. D-19
D-8.1 BAMu.D Input Prcipts D-21
D-8.2 BAMOD Successful Convergence Output D-22
D-9.1 SDivOD Input Prompts D-24
D-9.2 SD*= Successful Cmvergence Output D-25

CORENTS

This report on the methodology investigation of the software maturity
model validation represents the completion of Phase I of the investigation.
In iase II, the models reomerded by this report will be applied to a
tactical system for validation.

This report has been developed in accordance with Test and Evaluation
Curmond (TECC1) Reg 70-12 and consists of the following sections and
appendixes:

a. Section 1 is an executive sumoay of the investigation.

b. Section 2 contains the details of the investigation.

c. Section 3 consists of the following appendixes:

Apperdix A - Methodology Investigation Proposal

Appendix B - References

Appendix C - Acronyms and Abbreviations

Appendix D - SMERFS Models

Appendix E - Glossary

Appendix F - Distribution

The following personnel from Camarco, Inc. assisted in the preparation of

this report under Contract Number DAEAI-87-C-0014:

Mr. Britt Barrett ompiled this final report.

Mr. Fred Gampper provided the technical direction for this report.

Ms. Sharon Vanderhyden and Ms. Karen Norris provided skillful assistance
in the technical editing and word processing of the report.

The following personnel from USAEPG assisted in the preparation of this
report under Contract Number DAEA18-87-C-0014:

Ms. Linda Skjerven and Ms. Cassondra Renfro provided helpful coments in
the review of the report.

I

SEcTON 1. SUMALR

1.1 BACIRUND.

Software h~s become a major part of Comuand, Control, Ccmmications, and
Intelligence (C-I) systems. The complexity of software system development and
maintenance is steadily increasing. Test data shows that software errors
occur more often than hardware errors, and that many software errors are
undetected until the system is tested in the field. The cost to correct
software errors increases as detection is prolonged through the software life
cycle. These are some of the reasons why software reliability is becoming
increasingly important (reference 1). Software reliability is prcbably the
most important factor of software quality (reference 2). It has becane, in
fact, vital for software managers and engineers to be able to measure and
predict software reliability before fielding of systems.

system reliability is measured in stochastic terms. That is, system
reliability is "the probability that the system performs its assigned
functions under specified erivirormental conditions for a given period of
time." The use of reliability as a rating factor for a system is intimately
associated with the need for the system to function properly, over a specified
period of time, when such operation is of a critical nature. According to one
Air Force study, "In the past, the approach to determining or predicting
system reliability has been to look at the hardware components, calculate
their combined reliability, assume software reliability was one, and use the
hardware reliability number as the system reliability" (reference3). That
study exposes the inadequacy of this approach. It indicates that "software is
a significant contributor to system failures" and it identifies software
reliability models as one dimension of research to improve system reliability
prediction and estimation.

Software reliability may be characterized in terms that closely parallel
the definition of reliability for technical systems. Goodenogh defines
software reliability as "the frequency and criticality of program failure
where failure is an unacceptable effect or behavior under permissible
operating conditions." Like hardware, software reliability can be represented
by the rate at which errors are uncovered and corrected. Unlike hardware,
there is less evidence that empirical error data (collected during testing and
after release of the software) can be used to develop accurate predictive
models of software reliability.

It is difficult to give a precise definition of software reliability.
Many attempts have been made to stardardize the definition; however, no one
definition is accepted as standard (reference 1). Some might say that
software is reliable if it is correct. That is, software is reliable if it
meets its initial specifications and performs as specified. This definition
does not take into acount the possibility that the software specifications
may be incoxmplete and incorrect. This definition confuses software
reliability with software correctness. Software reliability concerns any
software failure, whereas software correctness concerns the degree to which
software design and code conform to specifications and standards (reference
4).

2

Musa defines software reliability as "the probability of failure-free
operation of a computer program for a specified time in a specified
environment" (reference 2). This methodology report chooses this definition
because the concern of this investigation is to ascertain software reliability
measures which can be cumbined with hardware reliability measures to determine
system reliability. The definition is tied to the idea that the reliability
of a software system (i.e., hardware, software, and manual operations) is
dependent upon the reliability of its hardware and software components. In
making this choice, this report recognizes the dependence of software
reliability on other software quality factors such as correctness and
maintainability. This interdependence of software quality factors is the
subject of another methodology investigation report (ref erenc 5).

In Husa's definition of software reliability, failure-free is defined as
having no occurrence of a software failure. Software failure is defined as a
deviation of the operation of a computer program from its requirements
(reference 2). Software failure and software error are used interchangeably
in the literature, and this is the source of much confusion. This is because
software fault and software error are also used interchangeably. Software
error and software fault, therefore, are often equated. A software fault,
however, is not the same thig as a software failure. The problem is resolved
by realizing that software error has two meanings. In one context, software
error means software failure. In another context, software error means
software fault. To avoid confusion, this report does not equate software
fault and software error. It does, however, use software failure and software
error interchangeably because many of the cited sources equate these two
terms.

Musa's definition of software failure implies that software failure is a
dynamic process. 'ibat is, the program has to be executing for a failure to
occur. Software failures can be characterized in the following ways: time to
failure, time interval between failures, cumulative failures experienced up to
a given time, and failures experienced in a time interval. Since much of the
literature uses software error and software failure interchangeably, software
failures are also daracterized as time between error, cumulative errors
experienced up to a given time, and errors experienced in a time interval.

Software faults cause software failures. A software fault is a defect
introduced into software through human error. A software fault is created
when a programmer makes a coding error. Faults are also created when a
systems analyst incorrectly specifies a requirement or when a prcgramrer
analyst produces erroneous program design language (PDL). Each of these
latter instances can lead to seemingly correct code which, when executed,
propagates an erroneous requirement or design.

Program size and ccmplexity have grown to the point where it is
impossible to check the astronomical number of logic paths through the code
(reference 6). For example, large scale real-time embedded systems such as
the Trident-I Fire Control System (TFCS) have an astronomical number of logic
paths (reference 7). It is impossible to check every conceivable logic path
in its computer code. Software reliability estimation is an area of research
which attempts to quantify the number of faults renaining in a p,,gram without
having to check out all of these paths. More importantly, this form of
estimation can tell us how often the faults cause failures. As for hardware,

3

this is the primary objective of software reliability prediction: given a
cmpa- (software owponent), what is the probability that it will fail in a
given time period, or equivalently, what is the expected time duration between
failures? In hardware, if the mean time betwen failure (MBF) is too small,
then more reliable cczqonewts or redundant caponents are used to achieve the
required improvements. In software, the approach to inproved reliability is
replacing errns code with debugged code.

Over the past two decades, many models and estimation procedures have
been proposed to quantify the reliability of software. Examples of such
models are mathematical models known as software reliability models. Dr.
William H. Farr of the Naval Surface Warfare Center cornducted a survey of
reliability modeling and estimation techniques in which he identified three
categories of software reliability models (reference 7): error seeding
models, data dczain models, and time domain models. Dr. Amrit Goel of
Syracuse University categorized software reliability models in a similar way
through a survey of his own (reference 3).

Error seeding/tagging models involve "seeding" software with a known
number of software faults. These models assume that the actual distribution
of software faults is the same as the distribution of the "seeded" faults.
The total number of software faults inherent in the software are estimated
from counts of software faults discovered during software testing.

Data domain models estimate a program's current reliability based on the
ratio of the number of successful runs bserved to the total number of runs
made. That is, the estimated reliability is simply the total number of
successful runs divided by the total number of test runs. Run is an arbitrary
term generally associated with sae function software performs (reference 2).

Time damain models have received the greatest emphasis in the literature
and in real wrld applications. These models find their roots in hardware
reliability modeling. That is, the concepts of hardware reliability modeling
were adapted for use in modeling software reliability. Some of these models,
however, have terms which do not have hardware counterparts (e.g., the number
of remaining faults). Each of these models make assumptions that cax- vary
from model to model (reference 7). One of the assumptions that the Geometric
Poisson Model makes, for example, is that each software fault that is
discovered is either corrected or not counted again. Brooks and Motley's
Models, on the other hand, assume that software faults can be reintrodued in
the software fault correction process. As another example, isa's Execution
Time Model assumes that the software failure rate is constant and changes only
at each software fault correction. Moranda's Geometric Model, however,
assumes that the software failure rate is initially a constant which decreases
in a geometric progression as software failures are detected. Each of these
models makes certain independence assumptions. For example, Moranda's
Gecmetric Model assumes that the detections of software failures are
independent. This assumption is needed to model software failure as an
exponentially decaying process. The independence assumptions all of these
models make are often challenged. There is, however, considerable evidenLe
that the assumptions are valid (reference 2). The confusion arises from the
argument that software faults can be related, and hence are not independent.
The possibility of related faults, however, does not imply that software

4

failures are related because software failures occur as the result of
rardaRization of inputs.

One category neither survey adresses are software reliability models
based on the internal characteristics of the program. These models provide a
priori estimates of software failures. That is, they predict the number of
software failures before operational data is available. Dozens of such models
estimate the number of faults in a program based on static characteristics of
the program itself which are generally related to software cumplexity measures
(reference 8). These models predict the total number of failures using the
fault reduction ratio which is the number of inherent faults in the program
divided by the fault-reduction factor. The fault reduction factor is
estimated from empirical data involving previous software development
projects. There is evidence that this factor is project independent, although
such a value is not known at present (reference 2).

People who make these models do not propose they be used without checking
the reasonableness of their assumptions. The current tre is to incorporate
one or more tire donain models in a software package which includes routines
to perform statistical analysis of the models. These packages include options
to check the reasonableness of the model assumptions by seeir how well the
model fits the data (referen 6).

The Department of Defense (DoD) has issued a directive which addresses
the reliability problem (reference 9). Departmnt of Defense Directive (DoDD)
5000.3, "lest and Evaluation," authorizes the issuance and publication of DoD
5000.3-M-i, 'Tst and Evaluation Master Plan (TEMP) Guidelines." According to
these guidelines (reference 10), the TE)P is "the basic planning document for
all test and evaluation (T&E) related to a particular system acquisition."
This document states, "The TE4P shall contain criteria usable for assessment
of software maturity." It indicates that evaluation criteria should include
quantitative thresholds for the Initial operational Capability (IOC) system at
Milestone I, Milestone II, and for the mature system.

The T=1P Guidelines distinguish between maturity and reliability.
Maturity subsumes reliability. This becomes clear if one thinks of
reliability as dependability. Software can be dependable (not fail), yet it
can still be poorly doo-unnted (not be maintainable). According to the TEMP
Guidelines, in order for a system to be mature, it "must have achieved its
reliability thresholds and be fully maintained in accordance with the DoD
Component's maintenance concept."

The TEMP Guidelines define reliability to be "the probability that an
item will perform its intended function for a specified interval under stated
conditions." Threshold is defined to be "a minimum level of performance
required at a point in a system's life cycle such that the threshold at
maturity equals the requirement." In view of this, a system must have
reliability thresholds that are quantitative and probabilistic. Since the
system includes software, there should also be software reliability
thresholds. To measure such thresholds, techniques which are quantitative and
probabilistic are required. The area of software reliability estimation arose
for this purpose.

5

1.2 POBLEM.

DoDD 5000.3-M-i requires quantitative, probabilistic estimates of
software reliability to help ascertain software maturity. Although software
reliability models which compute such estimates exist, their suitability with
respect to the availability of required data has not been determined.
Furthermore, none of these models have been validated with test data from the
field for test items requiring evaluation by the United States Army Test and
Evaluation Ccmmard (TECOM).

1. 3 OBJBC E.

The objective of this investigation is to establish an accepted method of
cmp.ting software reliability to help assess the maturity of software in
embedded cxcpfter resources (ECR). Specific goals are:

a. To develop, as part of Phase I, a set of initial candidate software
reliability models to be screened for potential use in estimating software
reliability.

b. To identify, as part of Phase I, approaches other than reliability
models to estimate software reliability.

c. To complete, as part of Phase I, an evaluation of the set of
candidate software reliability models and other approaches to see if they can
be applied to develcpmental testing (Dr).

d. To provide, as part of Phase II, re.eamndations for a set of models
or any other methods to help determine the status of software during Dr.

1.4 PROCECURES.

Software reliability models and other methodologies for assessing
software maturity which are currently available from industry, academia, and
government agencies ware identified through a survey in one or more of the
following ways: attendance at appropriate seminars, examination of the
literature, and consultation with other organizations.

Once identified, the models and methods were evaluated based on the
following criteria:

a. Does the model or other method provide probabilistic and quantitative
estimates of program reliability?

b. Is the model or other method sufficiently documented?

c. Does the model or other method have realistic data requirements?

d. Is the model or other method readily available?

e. Is the model or method applicable to M-?

6

1.5 REULS.

The survey resulted in the identification of numexus software
reliability models (Table 1.5-I). Most of these models were previusly
identified by the Naval Surface Warfare Center (NSWC) in a caprehensive
survey of their own (reference 7).

One of the major findings of the investigation was the identification of
the Statistical Modeling and Estimation of Reliability Functions for Software
(SMERFS) package. S was develced by the NSWC to help assess the
software maturity of large scale real-time systems such as Trident II. It is
an interactive program for measuring and predicting software reliability. The
models chosen for SMERFS are a subset of those seen in Table 1.5-I plus one
additional model that is an adaptation of one of these models. The SMERFS
models, seen in Table 1.5-11, were chosen "for their performance in
comparative studies and their ability to handle data collected from various
testing environments" (reference 6).

The survey of the current investigation resulted in the identification of
three alternate approaches for measuring software maturity. One of these
approaches is attributable to the TECCK Army Materiel Test and Evaluation
Directorate at White Sands Missile Range (WSMR), New Mexico (reference 11).
Two other approaches include methods outlined in Air Force Operational Test
and Evaluation Center Pamphlet (AXOTECP) 800-2, Volume 1, "Software
Operational Test and Evaluation Guidelines" (reference 12), and in Army
Materiel Camand Pamphlet (AMC-P) 70-14, "Army Materiel Camnand Software
Quality Indicators" (reference 13).

The evaluation of models and other methods resulted in the selection of a
set of software reliability models for potential use in estimating software
reliability. Only models and other methods satisfying the evaluation criteria
were selected as candidates for DT. Based on these criteria, only the SMERFS
were found to be of potential use for Dr. The Software Performance Parameter
Assessment (SPPA) model (reference 14), although statistically sound, was
ruled out as a candidate, for example, because it is poorly documented and has
unrealistic data requirements. The approach developed by W was eliminated
as a candidate, for example, because it is not fully dooumented, and it does
not provide probabilistic, quantitative estimates of software maturity. It
only gives subjective assessments of software maturity. Furthermore, it does
not address software reliability. The approach indicated in AMC-P 70-14 was
also eliminated because it does not apply to DT, nor does it provide
quantitative, probabilistic estimates.

The evaluation of models and other methods resulted in the realization
that the Test Incident Report (TIR) format does not provide for the collection
of all data needed to use these models or methods. For example, the SMERFS
model data requirements are exhibited in Table 1.5-111. TIRs do not provide
for the starting time of testing, the ending time of testing, and the Central
Processing Unit (CPU) time expended between software error occurrencs. TIRs
do provide the wall clock time of error ocurree and the chargeability of
sucho r (e.g, software).

7

Table 1.5-I. Software Reliability Mdels

ERROR SEEDING/TAGGING MODELS DATA DOMAIN MODELS

Mills Seeding Model Nelson Model
Rudner Seeding Model LaPadula's Reliability Growth Model

Basin Tagging Model

TIME DOMAIN APPROACH MODELS

Classical Software Models Bayesian Models

Weibull Model Littlewood's Debugging Model
Shooman Model Littlewood and Verrall's
Jelinski - Moranda Reliability Growth Model

De - Eutrophication Model Thompson and Chelson's
Schick-Wolverton Model Reliability Growth Model
Generalized Poisson Model
Geometric Model
Schneidewind's Model Markov Models

Non - Homogeneous Poisson Process Software Performance Parameter
Duane's Model Assessment
Musa's Execution Time Model Trivedi and Shooman's Many State
SBrooks and Motley's Models Littlewood's Semi - Markov Model

1.6 ANALYSIS.

During the investigation, sans confusion was founid regarding the terms
"software reliability" and "software maturity." Software reliability should
not be confused with software maturity. Nor should the two terms be
considered divorced from one another. Software maturity encarassems software
reliability. Software maturity is defined as "a measure of the software's
evolution toward satisfying all documented user req uirments (reference 12)."

8

Table 1.5-II. SMERFS Reliability Models

WALL CLOCK OR CPU TIME MODELS

1 The Littlewood and Verrall Bayesian Model
2 The Musa Execution Time Model
3 The Geometric Model
4 The NHPP Model for Time Between Error Occurrence

ERROR COUNT MODELS

1 The Generalized Poisson Model
2 The Non - Homogeneous Poisson Model
3 The Brooks and Motley Model
4 The Schneidewind Model

This includes reliability requirements. When one measures software maturity,
one is measuring all the factors making up software. A previous methodology
investigation addressed the problem of measuring all software factors
(reference 5). The current investigation, however, focused on measuring one
aspect of software maturity, namely, software reliability.

Although SMFS was selected for potential application to Dr, other
reliability models oculd do as well. SMEMF is simply a representative set of
reliability estimation models which satisfies all the selection criteria and
happens to be readily available.

Of all the tools identified, SMERFS holds the most promise for several
reasons. First, it produces probabilistic and quantitative estimates of
software reliability, which is what the TEMP Guidelines require. Other
approaches do not provide precise estimates of software reliability.
Furthermore, SMERFS is well documented; other a-roaches however, are not
documented at all. Also, SMERFS has been applied with varying degrees of
success by International Business Machines (I4) on the Space Shuttle Program
(reference 15), the United States Navy on the Trident Missile Program
(reference 16), and Hughes Aircraft on an air defense system (reference 17).

9

Table 1.5-III. SMFS Model Data Reiremnt*s

0 0 10

0 C 0 0

- 0 0 0- 0
(> EE-

0)) r- 0

0 0L V 0 -0

0 .c .z R -- 0 0-'0 "

LU 0 -' 0 0
4~-0

LU V oo c2

0 0._ -E- v . 00 .,

cci

I -- 0- 0- I -- C

V -.- . 0 .00 _

• ... O 00o 2

0 > M

0 0 . s -

ul0 V V
V cc

0 0 = o

=C .,

(U 0 E
0 04) 0 0

E ~ ~ ~ (0)2Ec V

roC. -a CL-
00 a 0

a0

0 0O
00

zz3 0

~Ioo

O0 0 0 co 0.

0 10

Finally, SMERFS is available for use on micrcrocessor systems and it is free
of charge.

Although the data requirements of SMERFS are realistic, a problem remains
with data collection. Based on data fram TIRs alone, none of the SMERFs
models can be run. For example, since TIRs do not provide CPJ time expended
between software errors, the CPU option cannot be chosen for any of the time
between error models. As another example, since TI2s do not provide the
starting and endirq times of testing, none of the error count models can be
run. For this same reason, the wall clock option cannot be chosen for any of
the time between error models.

1. 7 CONCLU IONS.

The Phase I goals of the software maturity model investigation were
achieved. The following conclusions were drawn:

a. Models for estimatir software reliability abound. The survey of
software reliability models was acccTplished. A set of candidate software
reliability models for potential use in estimating software reliability during
OT was developed.

b. Other approaches for assessing software reliability were identified.

c. An evaluation of these models and other approaches was ocmpleted,
providing a set of models for potential application to Dr. Of the methods
evaluated, software reliability models were found to be better suited for
making reliability estimations. TIRs, however, do not currently provide
enough fields of information to allow for the collection of data needed to run
these models. Until TIRs are upgraded to include such information, the data
needed to run these models will have to cae from elsewhere.

d. The overall objective of establishing an accepted method of compxting
software reliability to help assess software maturity depends upon the
successful cutcome of Phase II.

1.8 PEOMENDAGIONS.

The following r emwrdations are suggested as a result of this
investigation:

a. TO cmplete the investigation, it is rectuceded that Phase II begin
so recamherKiations for a set of models to help determine software maturity
during Dr can be provided. The set of candidate software reliability models
chosen during Phase I should be demonstrated by applyinq data frm a selected
tactical system, and the test results should be evaluated.

b. It is renmwrded that Army TIRs be enhanced to include fields for
the following data: CPJ time expended between software error occurrences;
starting and eniding tines of testing.

c. If the Phase II demnstration proves successful, then the methodology
of using reliability models such as those in qMERFS shculd be documented in a
Test Operations Procedure (TOP). For example, the TEOCH TOP for Software

11

Testing, dated 15 November 1977, could be revised to address software
reliability as a factor of software maturity. The methodology provided in
this report could be used to evaluate software reliability.

12

SECTI0N 2. DETAITS OF INVESTIGATICN

Software maturity and software reliability are not equivalent. Software
reliability is an important characteristic of software maturity. Software
maturity is "a measure of the software's evolution toward satisfying all
documented user requirements." Reliability is one such requirement.
Maintainability, integrity, and portability are exanples of others. So
software reliability is a part of software maturity. With this important
distinction between software maturity and software reliability in mind, a set
of software reliability models was identified for use in estimating software
reliability for assessing software maturity. Software reliability measures
are not the only measures of software maturity. Available reliability
estimation methods from industry, academia, and government agencies were first
identified through a survey that involved attendance at appropriate seminars,
examination of the literature, and consultation with other organizations.
After the survey, the available reliability estimation methods were then
evaluated using several criteria. Of all the reliability estimation methods
surveyed, only the available software reliability models were found to satisfy
all of the criteria. They were found to eliminate the guesswork fron system
testing through the application of statistical analysis, the need for which is
widely recognized in all fields of serious scientific endeavor.

2.1 SURVEY OF SOFIWARE RELIABILITY MDEIS AND ML IDGIES.

A set of automated software reliability models was identified through a
survey of existing software reliability estimation methods. The survey was
conducted in the following ways: conferences on software reliability and
testing were attended to see firsthand what software reliability estimation
methods are currently available; goverrment agencies and academia were
consulted; and a search of the literature was performed.

2.1.1 Available Software Reliability Models.

A software reliability model is a mathematical expression that can be
used to quantify/predict the failure behavior of software. Such models must
consider pertinent factors that affect software reliability such as the
following: fault introduction, fault removal, and software operational
environment. A good software reliability has the following major
characteristics: it gives good predictions of future failure behavior; it
campites useful quantities; it is simple to interpret and understand; it is
widely acceptable; and, it is based on sound assumptions. The software
reliability models that are readily available to the United States Army
Electronic proving Ground (USAEFG) include the SPPA and the set of models
contained within the &GM- SPPA was develcped by USAEPG (reference 14).
SMERFS was developed by the NSWC after their own extensive survey of software
reliability estimation techniques (reference 7). SFS is a software package
consisting of eight well-known models appearing in the literature.

2.1.1.1 Software Performanc Parameter Assessment.

SPPA is a mathematical model which provides quantitative measures of
software reliability. It was developed by USAEPG to meet the requirements of
the old test and evaluation directive, DoD 5000.3 (reference 18). That

13

directive required a quantitative measure of software maturity for embedded
couter software. This directive has been superseded by a new directive
(reference 9) which still requires, through DoDO 5000.3-M-1 (reference 10),
such quantitative measures.

2.1.1.1.1 SPPA Model Description.

The SPPA is a mathematical model of the fault appearance and removal
process. It is an example of a population model which consists of a Markov or
birth/death process. A population model possesses states and transitions
between states. For a given state, a population consists of a number of
irdividuals. A transition from one state to another correspcnds to either an
increase or decrease in population. For this application, a state corresponds
to the number of active or discovered software faults and a transition
corresporys to either the removal (death) of a software fault or the evocation
(birth) of a software fault. For a detailed discussion of the mathematics
involved in this model, see Volume II of the SPPA Methodology Investigation
Final Report (reference 14).

2.1.1.1.2 SPPA Model Inputs.

The inputs to the SPPA model consist of the fault mean function and the
repair mean function. Each of these functions have parameters which ist be
estimated before the functions themselves can be applied. The original
evaluation of SPPA indicated that this is a proble area (reference 19). This
evaluation recmnenied that this initial parameter estimation should be
automated. Initial parameter estimation currently has to be done by hand
calculation. These calclations, being tedious and time consuming, impose an
unrealistic data requirement.

The fault mean function models the software fault counting process. This
proess is assumed to be Poisson in nature. The actual fault mean function
can be described as the product of a Weibull distribution and a constant. The
function is estimated from histogram data using techniques from numerical
analysis. The specific techniques include maximization of a Poisson
likelihood function and the method of constr ined generalized least squares.

The repair mean function models the software repair counting process.
The parametric form of this function is also that of a Weibull distribution.
Like the fault mean function, this function is estimated using the same
tedmniques of numerical analysis.

One adlitional input includes the nmber of debugers. The number of
debugger resposible for generation of program repairs or patches is assumed
to be a known quantity. The original evaluation indicated the number of
de ers is an unrealistic if not impossible data requirement because the
model does not allow for the fluctuation of this nmber over the course of
testing.

2.1.1.1.3 SPPA Model Outputs.

The SPPA model outputs the following reliability estimates: mean time
between events, mean time to next fault, number of faults remaining, length of
suocessful mission, time to last fault, extinctions of the active fault

14

population, mean active fault count, time to next extinction, time to last

repair, and probability of zero faults.

2.1.1.2 SMEFS Interactive Software Package of Models.

SMERFS is an interactive software package which performs a software
reliability analysis using any of eight well-knuwn models appearing in the
literature (reference 6). These models include: Littlewood and Verrall's
Bayesian Reliability Growth Model, Moranda's Geametric Model, John Musa's
Execution Time Model, an adaptation of Amrit Goel's NHPP Model, the
Generalized Poisscn Model, Amrit Goel's NHPP Model, Brooks and Motley's
Discrete Software Reliability Model for a Software System, and Norman
Schneidewind's Model. A discussion of each model's assumptions, inputs, and
outputs is presented in Appendix D of this report. For an in-depth
discussion, see the SMS User's Guide (reference 16).

2.1.1.2.1 Motivation for SMERFS.

There are several motivations for using SERFS. One is that it
eliminates the guesswork from the task of software reliability estimation by
applying statistical analysis. SMERFS incorporates models which apply the
approach that has received the greatest emphasis in the literature. That
approach focuses upon modeling either the times between when errors are
detected (measured in CIj or wall clock time) or the number of errors detected
during each testing period.

SMERFS allows for a variety of modeling approaches such as exponential,
Poisson, binomial, and Bayesian models which have denstrated adaptability to
handle a range of data sets. By making available a collection of models, the
software analyst can run all the models and select the one which best fits the
data set of the analyst.

MFS provides a ccmplete reliability analysis which is fully automated.
It performs the difficult process of estimating the parameters of the
distributions upon which the models are based. 7e parameter estimation
process requires highly sophisticated numerical techniques which would be
prohibitively time c uming, tedious, and herne, error prone if done by hand.
The reliability analysis, furthermore, includes required statistical analyses
which would be formidable to do by hand. These statistical analyses allow one
to check the reasonableness of the model assumptions.

2.1.1.2.2 Features of SHERS.

SMFS has five desirable characteristics which can be summarized as
follows: it is maintainable; it performs a complete reliability analysis; it
is interactive; it detects user errors; and it is portable.

2.1.1.2.3 SMERFS Program Structure.

The basic SMERFS program structure is exhibited in Figure 2.1-1. SMERFS
is a menu driven system which provides the user with various menus, and it
prcupts the user for inputs during execution (refererm 6). The user inputs
free-format responses via a terminal keyboard. The SMERFS User's Guide
(reference 16) provides a detailed discussion of the prcipts and menus.

15

0Ii
00 43

r 3-

CLC
B v

%-.3 - I c

M~~~L E.r aI CrL

(5U

[7] (U L

I7I E .E3
cL 3 0 a .(J

0 cr.
:3 43 0

'I 0
U'j'& .

10

.20

0.0
IIZ

Al

61

2.1. 1.2.4 Sample SMERFS Reliability Analysis.

An illustration of the use of the SMERFS program in performing a
reliability analysis for a set of data is now provided. The original sample
analysis, documented elsewhere (reference 6), was accomplished executing an
earlier version of SMERFS. The latest version of S4EFS, which is Version
III, differs very little from previous versions.

Like the sample analysis previously dcumented (referenc 6), this
example will not illustrate all of the SMERFS options such as data
transformations arx model fitting. For a more detailed description of all of
the SMERFS options, consult either Appendix D of this document or see the
SMERFS User's Guide (reference 16). Since the model chosen for this example
is Goel's NHPP Model, none of the SMERFS features as applied to time between
error detections are shown since Goel's NHPP Model does not use error count
data.

During the execution of SMERFS, the main menu shown in Figure 2.1-2
appears on the terminal screen. The various module options are listed in the
order in which one would want to perform an analysis.

SMERFS OUTPUT. DATE: 10/04/84 TIME: 08-51.19

PLEASE ENTER MODULE OPTION, ZERO FOR LIST=[-]
THE AVAILABLE MODULE OPTIONS ARE

I DATA INPUT
2 DATA EDIT
3 DATA TRANSFORMATIONS
4 STATISTICS OF THE DATA
5 PLOT(S) OF THE RAW DATA
6 EXECUTION OF THE MODELS
7 GOODNESS-OF-FIT TESTS
8 PLOT OF ORIGINAL AND PREDICTED DATA
9 PLOT OF RESIDUAL DATA

10 STOP EXECUTION OF SMERFS
PLEASE ENTER MODULE OPTION- E

NOE: Blocked entries represent user input.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, O.D., Naval Surface Warfare Center

Figure 2.1-2. SMERFS Main Menu

17

The data input option wuld be chosen first. This option allows the user
to input actual data fram the field to fit to a reliability model. Data input
is exhibited in Figure 2.1-3. The available input options are file input or
keyboard input. These options can be displayed Urcuh a menu. Once the
input option is specified, data is entered through either a preexisting file
if the file input option is selected or a terminal keyboard if the keyboard
option is selected. In this example, the keyboard option is selected. Under
this option, the program then prcmpts for the type of data to be entered. The
SMERFS model data requirements can be seen in Table 1.5-111. Since Goel's
NHPP Model uses error counts, the interval cunts and lengths option is chosen
in cur example. As Figure 2.1-3 shows, once all of the data has been input,
SNERFS prompts the user to return to the main menu to pick the next module
option.

If a data entry error occurs, data can be edited at this point by
selecting the data edit option. Data can also be transformed by selecting the
data transformation option. SMERFS provides numerous transformations with
which to do this. The options for editing and transforming data can be seen in
Figure 2.1-1.

The user can select the option called "Statistics of the Data" to obtain
summary statistics on the data that was entered (Figure 2.1-4).

These statistics include the median error count and the number of errors found
up to this point. These statistics also include the following measures for
the data: the mean, standard deviation, variance, and the coefficients of
skewness and kurtosis.

In this continuing example, the fifth module option is now chosen to
obtain plots of the raw data (Figure 2.1-5). This results in two plots of
data. One plot shows raw ounts of errors per testing period versus the
number of the testing period. The other plot charts testing period length
versus testing period number.

The "Execution Of The Models" option is chosen next to select the model
devised to fit to the data. Figure 2.1-6 illustrates the menus and praipts at
this step. For this example, Goel's NHPP model was selected. A list of the
model assumptions and data requirements can be provided to the user at this
point to enable him or her to decide on the model's applicability. If the
user decides to continue with this candidate model, prmpts request inputs
needed to determine the parameters of the model. The inputs at this point
consist of initial estimates of the number of iterations to be used by the
model estimation pro1Ures and initial guesses at model parameters. The
number of iterations to be used in numerical procedures implnted by the
model must be chosen so these procedures will converge to a solution. If
successful civergence occurs, reliability estimates and their orresponding
precision are output; otherwise, the user will have to try a larger number of
iterations or a more appropriate initial guess for model parameters. Figure
2.1-7 exemplifies these model estimation p 1h res for our continui
example.

18

PLEASE ENTER INPUT OPTION, ZERO FOR LIST= @
THE AVAILABLE INPUT OPTIONS ARE

1 FILE INPUT
2 KEYBOARD INPUT
3 RETURN TO THE MAIN PROGRAM

PLEASE ENTER INPUT OPTION = f-2
PLEASE ENTER KEYBOARD OPTION, ZERO FOR LIST=
THE AVAILABLE KEYBOARD INPUT OPTIONS ARE

1 WALL CLOCK TIME - BETWEEN - ERROR (WC TBE)
2 CENTRAL PROCESSING UNITS (CPU) TBE
3 WC TBE AND CPU TBE

4 INTERVAL COUNTS AND LENGTHS
5 RETURN TO THE INPUT ROUTINE

PLEASE ENTER KEYBOARD INPUT OPTION =

A RESPONSE OF NEGATIVE VALUES FOR THE PROMPT
"PLEASE ENTER ERROR COUNT AND TEST LENGTH ="
WILL STOP PROCESSING

PLEASE ENTER ERROR COUNT AND TEST LENGTH = 9 1
PLEASE ENTER ERROR COUNT AND TEST LENGTH = 15 1
PLEASE ENTER ERROR COUNT AND TEST LENGTH = 9 1
PLEASE ENTER ERROR COUNT AND TEST LENGTH = 13 1
PLEASE ENTER ERROR COUNT AND TEST LENGTH = 9 1

PLEASE ENTER ERROR COUNT AND TEST LENGTH = 3 1
PLEASE ENTER ERROR COUNT AND TEST LENGTH = 3 1
PLEASE ENTER ERROR COUNT AND TEST LENGTH = 3 1
PLEASE ENTER ERROR COUNT AND TEST LENGTH = 5 1
PLEASE ENTER ERROR COUNT AND TEST LENGTH = -1 -1

PLEASE ENTER INPUT OPTION, ZERO FOR LENGTH =

NIE: Blocked entries represent user irpit.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, O.D., Naval Surface Warfare Center

Figure 2.1-3. S FS Data Iriput

19

PLEASE ENTER MODULE OPTION, ZERO FOR LIST=
THE AVAILABLE MODULE OPTIONS ARE

1 DATA INPUT
2 DATA EDIT
3 DATA TRANSFORMATIONS
4 STATISTICS OF THE DATA
5 PLOT(S) OF THE RAW DATA
6 EXECUTION OF THE MODELS
7 GOODNESS - OF - FIT TESTS
8 PLOT OF ORIGINAL AND PREDICTED DATA
9 PLOT OF RESIDUAL DATA

10 STOP EXECUTION OF SMERFS
PLEASE ENTER MODULE OPTION = T

INTERVAL DATA WITH EQUAL LENGTHS
STATISTICS FOR ERROR COUNTS TOTALING TO 189

MEDIAN .60000000E+01
HINGE *.40000000E+01 .90000000E+01
MIN/MAX *.20000000E+01 .15000000E+02
ENTRIES 28*
MEAN *.67500000E+01

DEVNAR *.34278273E+01 .11750000E±02
SKW/KRT *.53692710OE +00 - .45801780E±+00

PLEASE ENTER MODULE OPTION, ZERO FOR LIST= Fs_

NOTE: Blocked entries represent user inpqlt.

Saarce: An Interactive Program for software Rliability Modeling, Farr, W.H.,
Smith, 0. D., Naval Surface Warfare Center

Figure 2.1-4. R4MF~S Suimnary Statistics

20

TEST DATA

15-

C *

S10
U _* * * *

N _ * * *

T 5 * * ***

0 5 10 1,5 20 25 30

INTERVAL

INTERVAL LENGTH - 1 MONTH

L 2
E
N

G 1 ****t********************** *

T

H 0- IIIIlII I I I II IIIIII

0 5 10 15 20 25 30

INTERVAL

Scur-ce: An Ineractive Prga for Software Reliabl.ity R~de.i'q, Fa-', W.H.,
Sm-i.th, 0. D., Naval Surface Warfare Cne

Figure 2.1-5. SERFS Plots of the Raw ata

21

- , , ii II IIEl

PLEASE ENTER MODULE OPTION, ZERO FOR LIST= Io
THE AVAILABLE MODULE OPTIONS ARE
1 DATA INPUT
2 DATA EDIT
3 DATA TRANSFORMATIONS
4 STATISTICS OF THE DATA
5 PLOT(S) OF THE RAW DATA
6 EXECUTION OF THE MODELS
7 GOODNESS - OF - FIT TESTS
8 PLOT OF ORIGINAL AND PREDICTED DATA
9 PLOT OF RESIDUAL DATA

10 STOP EXECUTION OF SMERFS
PLEASE ENTER MODULE OPTION =

PLEASE ENTER COUNT MODEL OPTION, ZERO FOR LIST =
THE AVAILABLE ERROR COUNT MODELS ARE

1 GENERALIZED POISSON MODEL
2 NON -HOMOGENEOUS POISSON MODEL
3 BROOKS AND MOTLEY'S MODEL
4 SCHNEIDEWIND'S MODEL
5 RETURN TO THE MAIN PROGRAM

PLEASE ENTER MODEL OPTION = [

NOTE: Blocked entries represent user input.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, O.D., Naval Surface Warfare Center

Figure 2.1-6. SMERFS Execution of the Models

22

PLEASE ENTER A 1 FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SQUARES, OR A 3 TO TERMINATE MODEL EXECUTION = W1-
PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT

(A NUMBER BETWEEN ZERO AND ONE) =
PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS =

ML MODEL ESTIMATES AFTER 2 ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS .43140563E -01
WITHAPP. 95%C.I. OF (.24941691E-01, .61339435E- 01)

THE TOTAL NUMBER OF ERRORS IS .26954311E +03
WITHAPP. 95% C.I. OF (.19963048E+03, .33945575E +03)

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO= 17

PLEASE ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD =
THE EXPECTED NUMBER OF ERRORS IS .34007917E +01

PLEASE ENTER A 1 FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SQUARES, OR A 3 TO TERMINATE MODEL EXECUTION = -1
PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT

(A NUMBER BETWEEN ZERO AND ONE)= 0.043
PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS

LS MODEL ESTIMATES AFTER 2 ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS .43315840E-01

THE TOTAL NUMBER OF ERRORS IS .26890859E + 03

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO =

PLEASE ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD -
THE EXPECTED NUMBER OF ERRORS IS .33895981 E + 01

PLEASE ENTER A I FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SQUARES, OR A 3 TO TERMINATE MODEL EXECUTION=

NOTE: Blocked entries represent user input.

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, O.D., Naval Surface Warfare Center

Figure 2.1-7. SMERFS Model Estimation Prockeires

23

The user can determine the adequacy of the model by performing
statistical analysis through SMERFS. One may perform a Chi-square
goodness-of-fit test and see tables of the original, predicted, and residual
data by choosing option 7. Figure 2.1-8 shows the Chi-square statistic and
the tabulated data for this example. Figure 2.1-9 depicts the raw and fitted
model together. Figure 2.1-10 shows a residual plot of the NHPP fit. The
model fit of data and the residual plots are obtained through options 8 and 9,
respectively. If the user determines that the model is inadequate based on
these options, a different model will be fitted to the data. Alternately, the
user could edit the data if it is found to be suspect and run the model again
or try a different data transformation.

2.1.2 Other Approaches and Methodologies.

An attempt was made to identify approaches other than software
reliability models which can estimate software reliability to assess software
maturity. No such approach was found. Other methods which assess software
maturity were identified, but none of them esploy statistical analysis to
compute reliability metrics such as mean time to failure (MlTF) and remaining
number of software faults.

2.1.2.1 Alternative Approach.

One approach developed by WSMR makes no attempt to measure software
reliability (reference 11). Instead, it attempts to measure software maturity
which is defined as "the software state of readiness to proceed to the next
stage of its development." Many factors are considered in assessing software
maturity, but not software reliability. The factors considered include
results from various assessments such as extent of test, software change
analysis, software performance assessmnt, and software test bed assessment.
These assessments involve qualitative guidelines. The final determination of
the maturity of software is done by making an engineering decision based upon
the results of these asses- - (reference 11). Accordlng to the creator of
this approach, its methodology is not formally doc d (reference 20).

2.1.2.1.1 Extent of Test Assessment.

The Extent of Test (BOT) a ssment involves the determination of the
extent to which each software requirement has been tested. Results are
categorized in increasing order of desirability as either NOT TESTED, Lnm=TrE,
EXEISED, or STRESSED. Alternatively, the ratio of the number of test
conditions observed to the number of test conditions required can indicate the
BOT.

2.1.2.1.2 Software Change Analysis.

This involves a determination of the validity of software changes and the
effect of software changes on the validity of previously obtained test
results. A change profile which distinguishes changes due to reqirements,
design, and code is maintained. A trend analysis of this profile provides
input to the assessment of software maturity.

24

PLEASE ENTER MODULE OPTION. ZERO FOR LIST-

PLEASE ENTER THE CELL COMINATION FREQUENCY (THE STANOARD

IS AFIVE); OR A MINUS 1 TO INDICATE NO CELL COMBINATIONS- 8]
THE CHI -SQUARE STATISTIC IS .25055879E +02

VTH 25 EGREES-OF-FREEOM.
PLEASE ENTER 1 TO TRY ANOTHER COMBINATION FREQUENCY:

ELSE ZERO - MO

PLEASE ENTER 1 FOR THE DATA USTING: ELSE ZERO . 5]
NUMBER ORIGINAL DATA PREDICTED DATA RESIDUAL DATA

1 .90000E+01 .11300985E +02 -2G0UdE+01

2 .15=000E+02 .109O0443E+02 .40995567E+01

3 9000E+01 .10440191E+02 -. 14401912E+01

4 .130000E+02 S99724E+01 n276E+01

5 .90000E+01 .97TI664E+01 -,57716G42E+00

6 .7?000E+01 B1727874E+01 -217Z784E+01

7 .ln000E+02 .97554825E+01 .12145175E+01

a .00000E+01 84145309E+01 -2414530E+01

9 .(000E+01 jW421E+0 1 -20592421E+01

10 .11000000E+02 .77189547E+01 32910453E+01

11 .700000E +01 .7"S30354E+01 +00

12 .40000000E + 01 .7060774E+01 -30774E + 01

13 ,=000E +01 .7818996E+01 -. 7918971E,00

14 0000E +01 ,45459E+01 -3495459E+01

15 .3)000E+01 .S212829E+01 27797171E+01

16 .110000E+02 .556001E+01 50413999E+0

17 .10=000E +02 .57070067E+01 .42929913E +01

18 , 000E+01 .4660402E+01 5 976E+00

19 ,0000E+01 .,2463E+01 -. 2483E +01

20 ,4000000E+01 .50141972E+01 -. 1014197+01

21 20000E+011 A184815E+01 -29024815E+01

22 .70000E+01 .A5S951E+01 240949E+01

23 A400000E+01 4M54906E+01 -. 4054908E + 00

24 .SO000E+01 .42194765E+01 ,7802349E +00

25 3 000E+01 .40413165E+01 -. 1041318M+01

26 ,3C000E+01 307D5790E +01 - 77MOE+00

27 .3000E+01 0'72464E +01 -. 707241M + 00

28 .5W0CX00E+01 144E+01 .1449205E +01

PLEASE ENTER MOOU.E OPTION. ZERO FOR LIST-

Source: An Interactive Program for Software Reliability Modeling, Farr, W.H.,
Smith, O.D., Naval Surface Warfare Center

Figure 2.1-8. SMERFS Chi-Square Statistic and Tabulated Data

25

TEST DATA - NHPP MODEL FITED
15.0 -

12.5

* •

10.0 * *

C
0
U 7.5
N*
T

5.0

2.5

0.0

0 5 10 15 20 25 30

INTERVAL

Sarc: An interactive Program for Software Rliability Mdtling, Farr, W.H.,
Smith, O.D., Naval Surface Warfare Center

Figure 2.1-9. SMERFS Model Fit of Data

26

RESIDUAL PLOT OF NHPP FIT

6

4 *

C 2
0
U-*
N •
T 0

-2 . *

-4

0 5 10 15 20 25 30

INTERVAL

Source: An Interactive Progrm for Software Rliability Modeling, Far, W.H.,
Smith, O.D., Naval Surface Warfare Center

Figure 2.1-10. SMERFS Plot of Residuals

27

2.1.2.1.3 Software Performance Assesnt.

The software perfonince assessment det what requirments have
been met. In addition, it ascertains the boundaries and limitations of the
capabilities of the software. These determinations provide a confidence
indicator of the maturity of the software.

2.1.2.1.4 Other Factors Affecting Software Maturity.

Other factors include adequacy of test beds, adequacy of data collection,
and quality of documentation. The WSMR approach addresses only adequacy of
test beds while recognizing that other factors exist.

Test bed assessint determines the effectiveness of various test beds.
This provides insights into where test resources can be spent most
effectively. Insights can be achieved by cxmparing the Completeness of Test
(COT) frau Test Planning to the EOT from Test Analysis.

COT can be assessed using a Test Coverage Matrix (T) which maps the
total set of software requirements and associated test conditions to planned
developer and Government tests. The test bed supporting a given phase of
testing is effective if such a comparison is favorable.

2.1.2.2 Another Alternative Approach.

AMTWEc evaluates the software cf a system with methodologies which
support two test objectives (reference 12). One of these objectives is
software aturity. AFOTECP 800-2 Volume 1 (reference 12) defines software
maturity as "a measure of the software's evolution toward satisfying all
documented user requirements." In this approach, the number and severity of
changes required to meet documented user requirements is the primary indicator
of mature software (reference 12). Software maturity assessment utilizes a
software tracking methodology and a software fault analysis.

2.1.2.2.1 Software Fault Tracking Methodology.

The Deputy of Software Evaluation (ESE), software evaluators, and
deputies for operations and logistics evaluation take part in system testing,
review system test data, and look into system software related performance
deficiencies. Software problems and enharcments are maintained in a watch
list under documented procures. A level of severity is assigned to watch
list items under Operational Test and Evaluation (OT&E) guidelines provided in
an OT&E data managment plan. Test teams submit service reports on watch list
items thought by the test team to warrant particular attention. Periodic
meetings are conducted during testing to review and validate software
problems. The severity of software problems is also reviewed and validated at
such meetings. A data base of software problems is maintained using a small
ompter system.

2.1.2.2.2 Software Fault Analysis.

This analysis uses two indicators. The primary indicator is the slope of
the graph of new software faults being discovered during test. Software
problems are tracked by a severity point system. Severity points are

28

accumulated and plotted against elapsed time as testing progresses and new
fault data is collected. A decrease in the slope of this graph or curve over
time is the primary indicator of software maturity.

2.1.2.3 AMC-P 70-14 Approach.

AMC-P 70-14 describes software quality indicators designed to provide
program managers with an "early warning mechanism for detecting software
quality problems before they reach the field" (referene 13). Three of these
indicators can provide insight into the reliability and maturity of software.

2.1.2.3.1 Fault Density.

The fault density indicator for a Crmpter Software Configuration Item
(CSCI) uses two metrics. One of these is the cumulative faults divided by the
total number of Capter Software Units (CSUs) in the CSCI. The other is the
cumulative faults corrected divided by the total nmiber of CSUs in the CSCI.

AMC-P 70-14 gives a possible rule of thumb for using this indicator to
assess software maturity. According to AMC-P 70-14, "Fault density should
begin to level off during the midpoint of test and flatten as testing nears
copletion." The pamphlet points out that failure of the fault density curve
to exhibit such characteristics "may be indicative of immature software."

2.1.2.3.2 Test Coverage.

The test coverage indicator is a measure of the conpleteness of testing
progress from a developer and user perspective. The indicator is the product
of the percentage of requirements implemented and the percentage of software
structure tested. The percentage of require ents implemented is the ratio of
the number of tested implemented capabilities to the total required
capabilities. The percentage of software structure tested is the ratio of
software structure tested to the total software structure. Software structure
is a function of the level and depth of testing. Its inputs may be units,
segments, statements, branches, or path test results.

2.1.2.3.3 Test Sufficiency.

The test sufficiency indicator assesses sufficiency of software
integration and system testing based upon a prediction of the remaiing
software faults. Indicator inputs include the following: total number of
faults predicted in the software; number of faults detected before software
integration testing; number of units integrated; total number of units in the
CSCI; and, total number of faults detected to date during test. The total
faults predicted has to be estimated. AMC-P 70-14 indicates ways of doing
this.

2.2 EVAlJATION OF THE MDELS AND OThER MEIHOS.

Upon cmpletion of the survey, the available reliability estimation
models and other methods were evaluated according to the following criteria:

a. Does the model or other method provide probabilistic and quantitative
estimates of program reliability?

29

b. Is the model or other method sufficiently documented?

c. Does the model or other method have realistic data requirements?

d. Is the model or other method readily available?

e. Is the model or other method applicable to D?.

Only the software reliability models within the S were found to
satisfy all of the criteria. Only these models perform statistical analysis
to eliminate the guesswork frcu software maturity estimation.

2.2.1 Evaluation of SPPA.

SPPA has been previously evaluated (reference 19). That evaluation
concluded that the data requirements of SPPA are unrealistic and that it is
poorly documented. In that evaluation it was recommended that a different
model be used to estimate software reliability.

In reevaluating the SPPA, the same conclusions were drawn. Although SPPA
satisfies three of the necessary criteria, it fails to satisfy the criteria
for realistic data requirements and sufficient documentation.

2.2.2 Evaluation of SMERFS.

SMERFS is a powerful reliability estimation tool. It has been applied
with varying degrees of success by I3M on the Space Shuttle Program (reference
15), the United States Navy on the Trident Missile Program (reference 16), and
Hughes Aircraft on a continental air defense system (referenc 17). In all
cases, SMERFS provided conservative estimates of software reliability.

SMERFS is well documented and is available at no cost for use on
microprocessor systems. It performs a complete reliability analysis of
software failure data. This reliability analysis involves statistical
analysis which ccmputes quantitative and probabilistic estimates of software
reliability.

The TIR does not include sufficient information to run the SMERFS models.
For example, TIRs do not provide CPJ time expended between software failures;
nor do TIRs provide the starting and ending times of testing. These data are
needed to run the CPU time between failure models and the software failure
count models, respectively. Until TIRs are upgraded to include information,
this data will have to cam fram elsewhere. The data can be made available
through test officer reports, for example.

2.2.3 Evaluation of Other Approaches.

None of the alternative approaches satisfied all of the criteria. None
of these approaches, therefore, were selected as candidates for application to
Dr.

The one approach developed by WSM is certainly applicable to Dr; its
data requirements, however, are not clear. This problem stems from the fact
that the approach is not formally documented, whid is a problem in itself.

30

Its greatest drawback, however, is that it ompletely ignores statistical
analysis, which is used extensively in all fields of serious scientific
endeavor. Statistical analysis takes the guesswork out of system testing. It
enables one to provide probabilistic, quantitative estimates of software
reliability. This is sarething which WMR's systm oriented approach does not
do. For these reasons, this approach was eliminated as a way to estimate
software reliability. This does not preclude its use for assessing software
maturity. Software maturity enocpasses software reliability. This approach
just does not address the reliability factor of software maturity.

The one approach developed by AF=CEC satisfies all the requirements
except one: it does not provide probabilistic and quantitative estimates of
software reliability. Its software maturity indicator, given as the slope of
a line, cannot tell us the expected time to the next software failure or the
number of faults remainirg in the software. Such metrics are necessary if we
are really serious about wanting to know when to stop testing. The key words
here are indicator and metric. Software metrics measure same property of
software. Software indicators provide insight into software quality, but they
do not really measure software quality. For this reason, this approach was
eliminated as a way to estimate software reliability. This does not rule out
its use in assessing software maturity. It is simply recxmiended that it not
be used to estimate software reliability.

The AMC-P 70-14 approach was eliminated from candidacy for the same
reason as the approach developed by AFOTIC. Like that approach, it can be
used to help assess software maturity. This approach, however, does not
perform reliability estimation. In fact, it requires input frcm reliability
estimation.

31

This Page Interiticrially Blank

32

APPENDIX A

METHODOLOGY INVESTIAON PROPOSAL

A-I. Title. Software Maturity model Validation.

A-2. Category. All Department of the Army (DA) mission areas for system
containing embke ed ca iter resources (Em) are supported.

A-3. INSTALLATION OR FIED OPERATING ACId. U.S. Army Electronic Proving
Ground, Fort Huachuca, Arizona 85613-7110.

A-4. PRINCIPAL INVESTIGATOR. Mr. K. Van Karsen, Software and
Interoperability Division, STEEP-ET-OS, AUITVON 879-02090/2092.

A-5. ' STATEI OF ITIE PROB . Essentially all systems being developed
employ some use of computers and software. Unlike hardware, the metrics for
"software Reliability, Availability and Maintainability (RAM)" are
ill-defined. Hereafter, "maturity" will be used instead of RAM. DoD
Directive 5000.3 requires a quantitative measure of software maturity;
Developmental Test (DT) evaluators and testers are required to develop methods
for determining software maturity. TECOM cannot quantitatively measure the
maturity of the software embedded in computer driven systems.

A-6. BAaOJND. A number of models have been developed to predict software
maturity. However, none have been validated. Under TECOK project number
7-CO-RD9-EPI-004, USAEPG derived the Software Performance Parameter Assessment
(SPPA), a mathematical model which provided estimates of software maturity.
Unlike previous models, the SPPA took into consideration the repair process,
wherein repairs need not be made directly after encountering a fault (bug).
The SPPA model was used on data from Lipow and from the Position Location
Reporting System (PIUS) project. A final report was submitted to Headquarters
(HQ) TEOM and subsequently approved for distribution. Subsequent to the
development of SPPA, new models have appeared, but have not been evaluated for
applicability to the developmental testing environment. Also, some
researchers have developed an integrated package of various models with the
intent that one or more of the models would be appropriate for a given
situation. USAEPG has acquired a gov t-owned package, courtesy of Naval
Surface Warfare Center, containing eight different models. However, the
suitability of these models with respect to the availability of required data
has not been determined.

A-7. GAL. To establish an accepted method for assessing the maturity of the

software in ECR.

A-8. DESCRIPrI, OF INVESTIGATION.

a. Smgary. USAEPG will evaluate currently available software maturity
models and propose the best for use in TEaCC software testing.

b. Detailed Aproach. The U.S. Army Electronic Prvving Ground will:

(1) Phase I - First Year's Effort:

A-I

software Maturity Model Validation (Continued)

(a) Identify software maturity (reliability) models available
from industry, academia, and government agencies.

(b) Examine the data requireuexts of the various models with
respect to the data available during DT.

(2) Phase II - Second Year's Effort:

(a) Select a set of available models which meet the
constraints imposed by data availability.

(b) Consult with cognizant individuals on the applicability of
the candidate models to TEC0M's test and evaluation mission, and select a
final set of models for use during Dr.

(c) Demonstrate the raxtrerded methods by applying data from
a selected tactical system, and evaluate the results.

c. Final Product(s).

(1) Phase I:

(a) A set of initial candidate software maturity models.

(b) Evaluation of the data requirements for application to DT.

(2) Phase II:

(a) Recmmendations for a set of models to determine software
maturity during Dr.

d. Coordination. Coordination with TE00M activities will be
aooomplished through the TECC14 Software Technical Comttee (TSOTEC).
Coordination with other organizations will be performed directly.

e. Environmental Inmact Statement. Execution of this task will not have
an adverse impact on the quality of the environment.

f. Health Hazard Statement. Execution of this task will not involve
health hazards to personnel.

A-9. JUSFIIu.

a. Association with Mission. One of TEOOM's missions is to perform
developmental tests on EC. The investigation is needed to advance the
concept of software maturity. The Army Science Board report on testing of
electronic systems, with emphasis on software intensive systems, advocates RAM
(maturity) programs as essential.

b. Association with Methodoloy/Instrumentation Prora. This project
supports thrusts of the TECO Methodology Program to improve the quality of
testing as well as the test process. Instrumntation developed or acquired
previously would be used to form the basis of instrumentation required by the
methodology.

A-2

Software Maturity Model Validation (Continued)

c. Present cability. Limitations, Iwprovement and Impact on Testing if

(1) prEe Capability. The current test capability provides
information in the form of Test Incident Reports (TIRs), for assessing
software maturity.

(2) Limitations. Appropriate maturity models have not been
identified and validated for application to Dr, even thagh sam raw data
(TIRs) are available for analysis. Most prior attempts to assess maturity
have avoided the lack of a validated model by using rather crude methods. For
example, maturity per DoD-STD-1679A is determined on the basis of the number
and severity of unresolved software errors at the time of acceptance. The
number of latent faults which may surface after deployment is not estimated.

(3) Improvement. USAEPG and other organizations have developed
software maturiy~ models which may be suitable for Dr use. Identification ad

validation of a model which will work within the Dr enviroment will greatly
improve estimated maturity quality.

(4) Impact on Testing if Not Approved. The intent of DoDO 5000.3
is not met unless a quantitative means of evaluating maturity is provided.
Reporting maturity as the amount of discovered faults, while ignoring latent
faults, results in a distorted view of actual maturity, given the current test
techniques.

d. Dollar Savings. No dollar savings can be assessed at this time. The
potential of this project is that a quantitative measure of software maturity
can be attained; provide insight to Program Manager's (pM's) and evaluator's
as to the maturity of a given software system to prevent fielding of an
inature system and the inherent high cost to fix once fielded.

e. Workload. Over the past 5 years, USAEPG has experienced 17 tests

requiring an evaluation of software maturity.

Examples of items anticipated for testing include:

Test
Item Fiscal Year (FY) 88 89 90

MSE (Mobile Subscriber Equipment) X X X
JTIDS (Joint Tactical Information

Distribution System) X
MCS (Maneuver Control System) X X X
vim (Very Intelligent Surveillance

and Target Acquisition) X X X
FADDC I x x x
JINACCS (Joint Interoperability of

Tactical Ccmmand and Control Systems X X X
EPUS (formerly PJH) (Enhanced Position Location

Reporting System) X X X
GPS (Global Positioning System) X
ASAS (All Source Analysis System) X
AFAITM (Advanced Field Artillery Tactical

Data System) X X X

A-3

Software Maturity Model Validation (Continued)

f. Association with ReuiMeents IMnts . DoD Directive 5000.3
requires a quantitative measure of software maturity for each development
phase. To date, there are no accepted measuring schees.

g. t N/A.

A-4

Software Maturity Model Validation (Continue)

A-10. RESCES

A. Financ

Dollars (Thusands)

FY88 FY89

In-House Out-of-House In-House Out-of-House

Personnel
Ccupesation 10.0 12.0

Iavel 2.0 3.0

Contractual
support 52.0 45.0

Consultants &
Other Svcs

Materials &
SuPPlies 1.0 5.0

Equipment

General &
Admin costs

Subtotals 12.0 53.0 15.0 50.0

FY Totals 65.0 65.0

A-5

Software Maturity Model Validation (Continued)

b. Exlanation of Cost Categories.

(1) Per L e tn. This cost represents copensation
chargeable to the investigation for usir technical or other civilian
personnel assigned to the investigation.

(2) Travel. This represents cost incurred while visiting
govennnt and industry facilities.

(3) Contractual SuMrot. Performance of the investigation will be
acxmplished with resources provided under an existing support contract.

(4) Consultants and Other Services. N/A.

(5) Material and Sumplies. N/A.

(6) umd . N/A.

(7) General and Administrative Costs. N/A.

c. Obligation Plan.
FY88

Fiscal Quarter (F01 1 2 3 4 TOTAL
Obligation Rate 50.0 5.0 5.0 5.0 65.0

(Thousands)

d. In-House Personnel.

(1) In-House Personnel Requirements by Specialitv.

FY88 Only

Total
Number Reauired Available Reguired

Elect Engr, GS-0855 1 450 450 450

(2) Resolution of Non-Available rnnel. N/A

A-6

Software Maturity Model Validation (Continued)

A-11. INVASON A.

FY88 FY89

ONDJFMAMJJAS ONDJFMAMJJAS

In-House - . - . - . - • - . -I - - . - . - - . - R

Contracts
Consultants

Symbols: - Active ivestigation work (all categories)

.... Contract monitoring (in-huse only)

I Interim Report

R Final report due at HQ, TECO4

A-12. ASSOCIATION WMIH TOP PROGRAM. TEOCK Test Operations Procedure (TOP)
1-1-056, Software Testing, requires the assessment of software maturity. The
results of this investigation may provide reoXImended changes to TOP 1-1-056
with regards to software maturity.

FOR TIHE COMANDER:

ROBERT E. REINER
Chief, Modernization and

Advanced Concepts Division

A-7

Ibis Page Intentionally Blank

A-8

APPENDflC B

REFEMCS

1. Software Reliability, leone, A. M., Westirnghuse Electric Corporation,
Glen Burnie, Maryland, November 1988.

2. Software Reliability: Measurement, Prediction, Application, Musa, J. D.,
et al., Mc4raw-Hill, Inc., 1987.

3. RADC-I-87-171, Methodology for Software Reliability Prediction, Volumes
I-II, McCall, J., et al., November 1987.

4. RADC-TR-85-37, Volumes I-III, Specification of Software Quality
Attributes, Bowen, T.P., et al., February 1985.

5. Methodology Investigation Final Report Specification Requirements for
Software Evaluation, U. S. Army Electronic Proving Ground, Fort Huachuca,
Arizona, July 1988.

6. An Interactive Program for Software Reliability Modeling, Farr, W. H.,
Smith, 0. D., Naval Surface Warfare Center. Proceedings of the 9th Annual
Software Engineering Workshop, NASA Goddard, SEL-84-0004, Maryland, 1984.

7. NSWC TR 82171, A Survey of Software Reliability Modeling and Estimation,
Farr, W. H., September 1983.

8. NASA Contractor Report 4187, Quality Measures and Assurance for AI

Software, RLuhby, J., October 1988.

9. DoM 5000.3, "Test and Evaluation," 1986.

10. DoD 5000.3-M-i, "Test and Evaluation Master Plan (TE4P) Guidelines,"
1986.

11. A System-Oriented Methodology to Support Software Testability, Ellis, J.
0. and Wygant, M. N., International Test and Evaluation Association (ITEA)
Jcurnal, Volume IX (1988), No. 2.

12. AFMMCP 800-2, Volume 1, Software Operational Test and Evaluation
Guidelines, 1 August 1986.

13. AMC-P 70-14, Army Materiel Camnd Software Quality Indicators, 30 April
1987.

14. Methodology Investigation Final Report Software Performance Parameter
Assssmint Volumes I and II, U.S. Army Electronic Proving Ground, Fort
Huachuca, Arizona, 1981.

15. Onboard Primary Software Reliability Prediction (Space Shuttle Programs),
Hamilton, D. 0., Keller, T. W., IBM. Proceedings of the 11th Minncwbrook
Workshop on Software Reliability, July 26 - 29 1988, Minnowbrook Conference
Center, Blue Mountain Lake, New York.

B-1

16. NSWC mR 84-373, Statistical Modeling and Estimation of Reliability
Functicms for Software (SMERFS) User's Guide, Farr, W. H. and Smith, 0. D.,
April 1985.

17. AppiicdLion of a Hulti-Mode1 Approach to Estimating Residual Software
Faults and Tim Between Failures, Bowen, J. B., Quality and Reliability
Engineering International, Volume 3, 41-51, 1987.

18. DoDD 5000.3, "Test and Evaluation," 1979.

19. SPPA Preliminary Review, Letter No. 83-171, Project No. 0310,
13 May 1983.

20. Telephxoe Cnversation, Marthe Wygant, White Sands Missile Range,
January 1989.

B-2

APPE)DC C

ACRONYMS AND ABBREV=IONS

......... Advanced Field Artillery Tactical Data System
AF=TE Air Force Cperational Test and Evaluation Center

. Air Force Operational Test and Evaluation Center Pamphlet
AMC-P Army Materiel Camard - PanpletAPP Appoxmte
ASAS All Source Analysis System
AUION Automatic Voice Network

B4MOD Brooks andi Motley Model
eI Command, Control, CaIumiications, ard Intelligence

COT Cumpleteness of Test
CPU Central Processing Unit
CSCI Cumputer Software Configuration Item
CSE Cumputer Software Unit
DA Department of the Army
DA ROM epartmnt of the Army Readiness CamnandDATIP Dat Input
DEV Standard Deviation
DoD Department of Defense
DoDD Department of Defense Directive
DSE Deputy of Software Evaluation
Dr Developmental Testing
ER Exnbe.ed ccuputer Resources
EOT Extent of Test
EXP Exponential
F............. Fiscal Quarter
FY Fiscal Year
GErMDD......... Geometric Model
G Generalized Poisson Model
GPS Gloal Positioning System

............. He arers
IEM International Business Machines Corporation
IOC Initial Operational Capability
ITEA International Test and Evaluation Association
.. Joint Interoperability of Tactical Camand and Control

Systs
JTIDS Joint Tactical Information Distribution System
KR 10rtosis
.AV.O Littlewood and Verrall ModelIDG logaritbm

IS Least Squares
MAWo aim
MCSo o........... Maneuver control Sse
MIN ... o......... Minimum
ML Maximum LikelihoodSE .o........ Mobile Subscriber Equipment

............ Mean Tire Between Failure
MMI Mean Time To Failure

SMDD* MCsa Model

C-1

NIp. Nor.-fiomogeneous Poisson Process
NPflVD. Noarr gerUS Poisscn Model
.PM.. Non-Hiomoeneous Poisscn Execution Time Model

Nsw Naval Surface Warfare Center

OrO Operational Test ard EvaluationPJH PLRS Joint Hybrid
PLRS Position Location Reporting System
PK Program Manager
RADC Rom Air Develcpmnt Center
RAM Reliability, Availability, and Maintainability
S 0D Schneidewind Model
SEW Skewness
SERFS. Statistical Modeling and Estimation of Reliability Functions

for Software
SPPA Software Performance Parameter Assesnt
TBE Time Between Error
T4 Test Coverage Matrix
T&E Test and Evaluation
TEOC24 Test and Evaluation Command
T24P Test and Evaluation Master Plan
TFCS Trident-I Fire Control System
TIR Test Incident Report
TOP Test Operations Procedure
TR Technical Report
TT TECM Software Test and Evaluation Coamittee
USA United States Army
USAE G United States Army Electronic Electronic Proving Ground

............ Variance
VISTA Very Intelligent Surveillance and Target Acquisition
WC Wall Clock
WSMR White Sands Missile Range

C-2

APPENDIXD

SMEFS MO{SL

D-l. GENERAL DIsazsION.

A set of software reliability models for use in estimating software
maturity is described below. The eight models are contained in the SMERFS
interactive software reliability estimation package. Four of these models are
time between failure models and fcur are error count models. The following
information is provided for each model: model description, model assumptions,
mdel inputs, mdel outputs. For more detailed information on the various
prompts and options provided by these models, consult the SMERFS User's Guide
and Farr's Survey of Software Reliability Modelling and Estimation. The time
between and error count models are invoked by an execution time data model
menu and an interval data mdel menu, respectively (Figures D-1.1 and D-1.2).

PLEASE ENTER THE TIME MODEL OPTION, OR ZERO FOR A LIST.
THE AVAILABLE WALL CLOCK OR CPU TIME MODELS ARE

1 THE LITTLEWOOD AND VERRALL BAYESIAN MODEL
2 THE MUSA EXECUTION TIME MODEL
3 THE GEOMETRIC MODEL
4 THE NHPP MODEL FOR TIME - BETWEEN - ERROR OCC.
5 RETURN TO THE MAIN PROGRAM

PLEASE ENTER THE MODEL OPTION.

IF WALL CLOCKAND CPU 7BEDA TA, THEN."

PLEASE ENTER ONE FOR WC TBE OR TWO FOR CPU TBE.

*** DATA TYPE ERROR; PLEASE TRY AGAIN (AFTER THE NEXT PROMPT).

END/F

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Fuctions for Software (SMERS) USER' s Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-1.1. Menu for Execution Time Models.

D-1

PLEASE ENTER THE COUNT MODEL OPTION, OR ZERO FOR A LIST.
THE AVAILABLE ERROR COUNT MODELS ARE

1 THE GENERALIZED POISSON MODEL
2 THE NON - HOMOGENEOUS POISSON MODEL
3 THE BROOKS AND MOTLEY MODEL
4 THE SCHNEIDEWIND MODEL
5 RETURN TO THE MAIN PROGRAM.

PLEASE ENTER THE MODEL OPTION.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-1.2. Menu for Interval Data Models.

D-2

D-2. THE LITTEWOOD AND VERRALL BAYESIAN REIABI=TY GROWTH MVDEL.

D-2.1. Model Description. Proposed by Littlewood and Verrall, this execution
time data model tries to take into account the fact that the software
correction process can introduce errors.

D-2.2. Model Assumptions. This model makes the following assumptions:

a. The software is operated in a manner similar to its expected
operational usage.

b. Successive times between software failures are independent,
exponentially distributed random variables x(i), i= 1,2,...,n with parameter
M(i).

c. The A(i) are independent, r distributed variables with parameters a
and 7r(i). a is a r function parameter. 7r(i) is a function which describes a
programmer's quality and the programming task's difficulty. Littlewood and
Verrall recommend a simple linear or quadratic function for the form of r.
This recommendation is implemented in SMES.

D-2.3. Model Inputs. The model inputs include data entered via the SMERFS
data input module, DATINP, and responses to prompts from the SMERFS ILAVMVD
module.

D-2.3.1. D In . The data input via the DATINP consists of the times
between the error ocourrences (i.e., the x(i) 's) measured in CPJ or wall clock
tim. This is the raw data needed to run the model (i.e., the model data
requireents).

D-2.3.2. LAVMDD Prompts. IAVMDD prompts consist of description and list,
input, and prediction vector creation prapts.

D-2.3.2.1. LAVVD Description and List Prot. SMERS prompts the user
through IAV DD to see if the user wishes to see a list of the model 's
assumptions and data requirements. The model assumptions are those discussed
above. The model data requirements are the inputs to DATflNP.

D-2.3.2.2. IAV DD In=t and Prediction Vector Creation r . The LAVMOD
input prompts are exhibited in the menu in Figure D-2. 1. The first proipt in
that menu lets the user specify the desired method of estimating a, the r
function parameter, and the linear or quadratic coefficients of the r
function. The two methods of estimation allowed are maxim= likelihood and
least squares. The second pronpt allows the user to specify whether he or she
wants a linear or quadratic r function. The third prompt lets the user enter
initial estimates for the linear or quadratic coefficients known as the p
parameters. The final prapt lets the user enter the number of iterations to
perform to obtain the maximu likelihood or least squares estimates of the a
and P parameters.

D-2.4. M l t . If suessful convergence is achieved, LAVMDD outputs
the expected mean time before the next error; otherwise, it lets the user try
a larger number of iterations. In either case, estimates for the a and
parameters for the r function discussed above are output. The IAVMDD
successful convergence Output menu is seen in Figure D-2.2.

D-3

PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION.

WHICH OF THE FOLLOWING FUNCTIONS DO YOU DESIRE
TO USE AS THE PHI(I) IN THE GAMMA DISTRIBUTION?
THE GAMMA IS USED AS THE PRIOR WITH PARAMETERS
ALPHA AND PHI(I)

1. PHI(I) = BETA(O) + BETA(1) * I (LINEAR)
OR

2. PHI(I) = BETA(O) + BETA(1) 1**2 (QUADRATIC).

PLEASE ENTER iNITIAL ESTIMATES FOR BETA(O) AND BETA(1).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-2. 1. TAVMD Input Prcupts.

MODEL ESTIMATES AFTER ITERATIONS ARE:
ALPHA :
BETA(O) :
BETA(l) :

THE FUNCTION EVALUATED AT THESE POINTS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE MEAN TIME BEFORE
THE NEXT ERROR; ELSE ZERO.

THE EXPECTED TIME IS

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-2.2. LAVMDD Successful Conwergence Otput.

D-4

D-3. JOHN MUSA'S EXECUMION TIME MODEL.

D-3.1. Model Description. This execution time data model is based upon the
amount of CPU time used in testing rather than upon the amount of wall clock
or calende'r time. In addition to modeling software reliability, this model
can be used to model allocation of resources for testing segments and relate
CRJ time to wall clock time. The model is important for this reason.

D-3.2. Model Assumptions. The following assumptions are those needed only
for reliability modeling. The assumptions for modeling resource allocation
are documented in the SMERFS User's Guide.

a. The software is operated in a way similar to its expected operational
usage.

b. The probability of detecting any given error is in no way affected by
the occurrence of detecting another error (i.e., error detections are
irdepwxdent).

c. Every failure of software is observed.

d. The execution times between software failures are piecewise
exponentially distributed. That is, the hazard rate function is a constant
which changes whenever an error is corrected.

e. The ratio of the hazard rate to the number of errors remaining in the
program is a constant.

f. The ratio of the rate of fault correction to the rate of failure
occurrence is a constant.

D-j. 3. Model Ir - The model inputs include data entered through the
SMERFS DATINP and ,_ -sponses to prompts from the SMERFS JSMDD module.

D-3.3.1. DATINP . The data input via the DATINP module consists of the
times between software failure occurrenes measured in CPU time.

D-3.3.2. MUSMOD Promt. JSMDC prrmpts consist of description and list,
input, and prediction vector creation prcupts.

D-3.3.2.1. MJSMDD oescription and List PrR. RFS prompts the user
through MUSMVD to see if the user wishes to see a list of the model' s
assumptions and data requirements. The model assumptions are those discussed
above. The model data requirmnts are the inputs to IkTINP and the testing
campression factor, C. This factor is the average ratio of the error
detection rate during testing to that during operational use. This factor
allows for changes in the operational environment.

D-3.3.2.2. *KJSMOD Imut and Prediction Vector Creation Pra . The MSMDD
input prompts are exhibited in Figure D-3. 1. The first prompt lets the user
specify the testing corpression factor. If there is no basis for estimation
of this factor, a conservative approach would be to let C equal one. The
second prumpt allows the user to enter an initial estimate of the required
number of software failures that must be experienced to uncover all software

D-5

PLEASE ENTER AN ESTIMATE FOR THE TESTING COMPRESSION
FACTOR, C.
IT IS THE AVERAGE RATE OF DETECTIONS OF ERRORS DURING
"i HE TESTING PHASE TO THAT DURING USE. (A CONSERVATIVE
VALUE IS 1.0).

PLEASE ENTER AN INITIAL ESTIMATE FOR THE TOTAL NUMBER
OF ERRORS THAT MUST BE DETECTED IN ORDER TO UNCOVER
ALL PROGRAM ERRORS.

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-3 .1. MLJSMD Input Prmrpts.

faults within the program. The final prompt lets the user enter the maximunn
number of iterations to compute M, which is the required number of failures
one needs to experience to uncover all faults within the program.

D-3.4. Model Q . If a solution is found before the maxim= number of
iterations is reached, successful convergence output occurs (Figure D-3.2).
Otherwise, the user is allowed to repeat execution of the Musa model. After
successful output, the user is prompted to see whether he or she wishes to run
the Calendar Tire Caponent. This component ccupxtes resource allocation for
the testing segments. For further information on the description and outputs
of the Msa Calendar Tim Ccmponent, see the SMERFS User's Guide.

D-6

THE MAX. LIKEUHOOD ESTIMATES AFTER ITERATIONS ARE:

1. THE TOTAL NUMBER OF ERRORS THAT MUST BE DETECTED BEFORE

ALL ERRORS IN THE CODE ARE FOUND IS

WITH APP. 95% C.I. OF (,)

2. THE MAXIMUM LIKELIHOOD ESTIMATE OF THE INITIAL MEAN TIME

BEFORE FAILURE (MTBF) FOR THE PROGRAM IS
WITH APP. 95% C.I. OF (,

THE ESTIMATE OF THE FAILURE MOMENT STATISTIC IS
WITH APP. 95% C.I. OF (

THE ESTIMATE OF THE CURRENT MEAN TIME BEFORE THE NEXT
SOFTWARE ERROR OCCURRENCE IS

AND THE ESTIMATE OF THE FUTURE RELIABILITY FOR THE SAME

AMOUNT OF COMPLETED TESTING TIME IS

PLEASE ENTER 1 TO ESTIMATE FUTURE RELIABILITY

MEASURES AND TESTING TIME REQUIRED TO ACHIEVE
SPECIFIED GOALS; ELSE ZERO.

PLEASE ENTER THE DESIRED GOAL FOR MTBF.

AN ADDITIONAL ERRORS NEED TO BE DETECTED TO
ACHIEVE THE DESIRED GOAL; AND THAT WILL CONSTITUTE AN
ADDITIONAL HOURS OF CPU TESTING TIME.

PLEASE ENTER 1 TO TRY ANOTHER GOAL FOR MTBF;
ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-3.2. IJSMDD Successful 0onvergenoe Output.

D-7

D-4. MCRANDA'S GEflMC MDEL.

D-4.1. Model Descrition. This execution time data model is a variation of
the Jelinski-Moranda De-Eutrophication Model. The process of
de-eutroication presumes that the software hazard rate is reduced by the
same amount at the time of each error detection. The software hazard rate is
defined as the conditional probability that a software failure occurs in an
interval of time given that the software has not failed up to the beginning of
that time interval. The de-eutroiiication process is geometric for this model
because the hazard rate function decreases in a geometric progression as the
detection of errors occrs.

D-4.2. Model Assumptions. The model presumes the following:

a. The software is operated in a way similar to its expected operational
usage.

b. The program will never be error free.

c. The probability of detecting a given error may not equal the
probability of detecting another given error.

d. The probability of detecting a given error is not affected by the
probability of detecting another given error (i.e., the detection of errors is
independent) .

e. The rate at which errors are detected follows a geometric progression
which is constant between error occurrences. This inplies that errors became
harder to detect as debugging progresses.

D-4.3. Model . The model inputs include data entered through the
SMERFS DATINP and responses to prtupts from the SMERFS GECMDD module.

D-4.3.1. D Inpu. The data input via the DATINP module consists of the
time between software failure occurrences measured in either CRJ time or
calendar (wall clock) time.

D-4.3.2. GECOD Promuts. GBOMOD prompts consist of description and list,
input, and prediction vector creation prompts.

D-4.3.2. I. G EtOD Description and List Prmit. GEOWD prompts the user to
see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previously input to MIINP.

D-4.3.2.2. GMAVD In.xt and Prediction Vector Creation Prcmpt. The GEOM)D
input prompts are exhibited in Figure D-4. 1. The first prompt lets the user
terminate model execution or indicate the least squares or maximum likelihood
method to estimate the proportionality constant for the software hazard
function. The second prompt enables the user to enter an initial estimate for
this constant. The user shuld choose a number between 0 and 1 to guarantee
convergence of the solution. The final prompt allows the user to enter the
maximum number of convergence iterations for the estimation technique chosen.

D-8

PLEASE ENTER 1 FOR MAXIMUM LIKEUHOOD, 2 FOR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY
CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSW TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Furtions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-4. 1. G"VD Input Prompts.

D-4.4. M If a solution is found before the maximum number of
iterations is reached, successful convergence output occurs (Figure D-4.2).
Otherwise, the user is allowed to repeat execution of the model. As can be
seen from Figure D-4.2, outputs include estimates for the proportionality
constant, initial hazard rate, mean time before the next failure, and current
purification level regardless of the estimation technique chosen (i.e., ML or
IS). If maximu likelihood is chosen, it also provides 95 per cent confidence
intervals for these estimates.

Since the model assumes infinite errors, it cannot compute the total
number of errors in the program. Instead, it estimates the degree of
"purification" for the program.

D-9

IF THEMAXIMUM LKEIUHOODMEfTHOD WAS SELECTED, THEN"

ML MODEL ESTIMATES AFTER ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS

WITH APP. 95% C.I. OF (L
THE INITIAL HAZARD RATE IS

WITH APP. 95% C.I. OF (,
THE MEAN TIME BEFORE THE NEXT FAILURE IS

WITH APP. 95% C.I. OF (
THE CURRENT "PURIFICATION LEVEL' IS

WITH APP. 95% C.I. OF (,

ELSE, IF T/1ELE4STSQUARES ME/LHCD WAS SELECTED, THEN."

LS MODEL ESTIMATES AFTER ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE INITIAL HAZARD RATE IS
THE MEAN TIME BEFORE THE NEXT FAILURE IS
THE CURRENT "PURIFICATION LEVEL" IS

EN D IF

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-4.2. GECMDD Successful Convergence Output.

D-10

D-5. A1 IKATI OF GOEL'S NON-HOMOENUS POISSON PROCESS MODEL.

D-5.1. Model Dscription. This execution time data model is an adaptation of
Amrit Goel's NHPP interval count model.

D-5.2. Model Assumvtions. This model's assumptions include the following:

a. The software is operated in a way similar its expected to operational
usage.

b. The probability of detecting any given software error is the same as
the probability of detecting any other given error.

c. The cumulative number of software errors detected up to a point in
time are Poisson distributed. The expected number of software errors in any
small interval of time (t,t+6t) is proportional to the number of undetected
software errors at time t.

d. The mean of the Poisson distribution, M(t), is a bounded
non-decreasing function. As the length of testing tends to infinity, M(t)
approaches the expected total number of eventually detected software errors.

D-5.3. Model . The model inputs include data entered through the
SMERFS DATINP module and response to prompts frum the SMERFS NPIMOD module.

D-5.3.1. DATINP . The data input via the SMERFS DATINP consists of the
time between software failure occurren measured in either CPU time or
calendar (wall clock) time.

D-5.3.2. NPIMOD Prompts. NPIMDD prcmpts consist of description and list,
input, and prediction vector creation prompts.

D-5.3.2. 1. NPIMOD Description and List Prnomts. NPIMOD prcupts the user to
see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previously input to DATINP.

D-5.3.2.2. NIFMD Ingut and Prediction Vector Creation P. The NPIMOD
input prompts are edibited in Figure D-5. 1. The first prumpt lets the user
enter an initial estimate for the proportionality constant. The user should
choose a number between 0 and 1. The final prompt allows the user to enter
the maximum number of iterations.

D-5.4. Model . If a solution is found before the maximum number of
iterations is reached, successful convergence output occurs (Figure D-5.2).
Otherwise, the user is allowed to repeat execution of the model.

D-11

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY
CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-5.1 . NFThMDD Input Prcmpts.

MODEL ESTIMATES AFTER ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE RELIABILITY OF
THE PROGRAM FOR A SPECIFIED OPERATIONAL TIME BASED
ON THE CURRENT TESTING EFFORT; ELSE ZERO.

PLEASE ENTER THE SPECIFIED OPERATIONAL TIME.

THE ESTIMATED PROBABILITY THAT THE PROGRAM WILL
OPERATE WITHOUT ERROR FOR THE INPUT TIME IS

PLEASE ENTER 1 TO TRY ANOTHER OPERATIONAL TIME; ELSE ZERO.

PLEASE ENTER 1 FOR AN ESTIMATE OF THE TESTING TIME REQUIRED
TO ACHIEVE A SPECIFIED RELIABILITY FOR A SPECIFIED OPERATIONAL
TIME; ELSE ZERO.

ENTER DESIRED RELIABILITY AND SPECIFIED OPERATIONAL TIME.

THE REQUIRED TESTING TIME TO ACHIEVE THE DESIRED RELIABILITY
FOR THE SPECIFIED OPERATIONAL TIME IS

PLEASE ENTER 1 TO TRY DIFFERENT VALUES; ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-5.2. NPIVD Successful Convergence Output.

D-12

D-6. ME GENERALIZED FOISSCK MEL.

D-6. 1. Model Descrition. his model, which is one of the four models within
SMERFS that cbtains reliability estimates and predictions for interval data,
is analogous in form to other models such as the Jelinski-mranda, Lipow, and
Schick-Wolverton models. It is documwnted in a report by Schafer, Alter,
Angus, ard Emoto written under contract to the Rme Air Development Center
(RADC).

D-6.2. Model Assu=tions. The model makes the following five assumptions:

a. The software is operated in a way similar to its expected operational
usage-

b. In any time interval, the expected number of discovered software
errors is proportional to the product of the total number of existing software
errors and to same function of the amount of time spent in testing for
software errors. The function is expressed as an exponential function;
however, the function could be a linear or parabolic function to allow for a
broader class of adaptability.

c. All errors occur with the same probability, and the chance of any
given error occurring in no way affects the occurrence or lack of occurrence
of any other error (i.e., the errors are Irxeent of each other).

d. The severity ot each error is equal.

e. At the end of the testing intervals, errors are corrected without
introducing new errors.

D-6.3. Model . The model inrputs include data entered through the
SMFS DATINP and responses to prcupts frcm the SMERFS GIa4D module.

D-6.3. 1. DATINP . The data input through the SMERFS module consists of
the lengths of the various testing intervals and the number of software faults
discovered in each testing interval.

D-6.3.2. GPCMD P . GPCM0D prampts consist of description and list,
correction vector creation, input, and prediction vector creation prcupts.

D-6.3.2.1. G VD Description and List prpt. GCD prcepts the user to
see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previously input to DATINP.

D-6.3.2.2. GFMOD Correction Vector Creation . SMERFS prcupts for a
flag which indicates whether or not software fault corrections were performed
in the same interval in which they were detected. An error correction vector
is created if all error detections and corrections happened during the same
intervals; otherwise, the user must enter the number corrected at the end of
each period of testing.

D-13

D-6.3.2.3. GFmDD inut and Prediction Vector Creation r . The GPO)D
input prmapts are exhibited in Figure D-6.1. The first prompt lets the user
terminate model execution or specify the method of estimating (i.e., maximum
likelihood or least squares) the model's proporticuality constant and the
initial total number of errors in the software. After the user enters the
desired method, GPMD prampts the user for the weighting function or a list
of the available functions. If the user desires a list, two weighting
functions are listed if least squares was chosen as the method of model
parameter estimation; otherwise, one weighting function is listed. The third
prumpt lets the user specify the weighting function which is either a simple
parabolic function or some other polynomial function of order a. If the
latter choice is made, GPM= will additionally prompt for the order, a, of
the polynumial. If the maxinmu likelihood method was selected earlier, the
G1CD will prompt the user for an initial estimate of a. In either case, the
user is prompted for an initial estimate of the total number of software
errors and finally for the maximu nmbier of iterations to be used for the
model parameter estimation method.

The GFCV prediction vector creation prcmpts occur later upon successful
convergence of the model parameter estimation method.

D-6.4. Model O If the maximum number of iterations is reached before
a solution is found, SMERFS outputs attempted estimates of the model's
parameters and the number of remaining software errors. If processing errors
oocur, then appropriate error messages are output. In either case, the user
is allowed to try again. If the model successfully converges to a solution,
the output seen in Figure D-6.2 occurs.

D-14

PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST
SQUARES, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER THE WEIGHTING FUNCTION NUMBER, OR ZERO
FOR A LIST.

THE AVAILABLE WEIGHTING FUNCTIONS ARE
1 X(I) ** 2/2 (SCHICK-WOLVERTON MODEL)
2 X(I) ** ALPHA (WHERE ALPHA IS INPUT)

IF TiE/i MAX/MUM LIKELHOD METI-O/D WAS SELECTED, 77-EN"

3 X(I) ** ALPHA (WHERE ALPHA IS ESTIMATED)

END/F

PLEASE ENTER THE WEIGHTING FUNCTION NUMBER.

IFANALPHA INPUTFUNCTION WAS SELECTED, THEN."

PLEASE ENTER THE DESIRED ALPHA.

EL SE, IF T-/EALPIHA ESTIMA TION FU/CTION WAS SELECTE, THEN.

PLEASE ENTER AN INITIAL ESTIMATE FOR ALPHA.

END IF

PLEASE ENTER AN INITIAL ESTIMATE OF THE TOTAL NUMBER OF
ERRORS.

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling ard Estimation of
Reliability Functions for Software (MF.) =ER's ailde, Farr, W.H.,
Smith, O.D., December 1988

Figure D-6. 1. GWPC)D Input Prampts.

D-15

/FTHE MAXIMLM L/KELIHOOD METOD (OTHER THANALPHA ESTIMA TED) WAS
SELECTED, TmEN."

ML MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE _, AFTER
ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS
WITH APP. 95% C.I. OF (,I)

THE TOTAL NUMBER OF ERRORS IS
WITH APP. 95% C.I. OF(, _)

THE REMAINING NUMBER OF ERRORS IS
WITH APP. 95% C.I. OF(, _)

ELSE, IF THELEAST SOUARES METHOLD WAS SELECTED, THEN-

LS MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE , AFTER
ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS IS
THE REMAINING NUMBER OF ERRORS IS

ELS E , IF TIH-EMAXIMUMfLKELIHOOD METHOD (WTHALPHA ESTIMA TED,) WAS
SELECTED, THEN."

ML MODEL ESTIMATES, USING THE WEIGHTING FUNCTION TYPE 3, AFTER
ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS
THE TOTAL NUMBER OF ERRORS IS
THE REMAINING NUMBER OF ERRORS IS
AND ALPHA IS

END IF

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.

THE EXPECTED NUMBER OF ERRORS IS
WITH APP. 95% C.I. OF(, _)

PLEASE ENTER 1 TO TRY ANOTHER TESTING LENGTH; ELSE ZERO.

Soce: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Finctions for Software (mFS) USER's Guide, Farr, W.H.,
Smith, O.D., Decmber 1988

Figure D-6.2. GPCrJO Sucssful Convergence Output.

D-16

D-7. GOEL'S NHPP MOMM.

D-7. 1. Model Description. This model is one of the four models within SMERFS
that obtains reliability estimates and predictions for interval data. It was
developed by Amrit Goel and Kazu Ok=mato. Following other models, it assumes
that counts of software failures over time intervals that don't overlap follow
a Poisson distribution. A difference between this model and other Poisson
models is that this model treats a program's initial error content as a randcm
variable, and not as a fixed constant.

D-7.2. Model Assumptions. This model makes the following assumptions:

a. The software is operated in a way similar to its expected operational
usage.

b. The nmber of software errors detected in successive time intervals
are iependent.

c. The probability of detecting any given error is the same as the
probability of detecting any other given error. In addition, the severity of
each error is assumed to be equal.

d. At any time t, the cumulative number of errors detected follows a
Poisson distribution with mean m(t). m(t) satisfies a first order
non-hcmxgeneous linear differential equation.

e. m(t) is a bounded, nondecreasing function of t which approaches the
expected total number of errors to be detected as t tends to w.

D-7.3. Model Inputs. The model inputs include data entered through the
SMERFS DIATINP and responses to prompts fram the SMFS NPIMDD module.

D-7.3.1. DATINP . The data input thrugh the SMERFS DITINP module
consists of the lengths of the various testing intervals and the number of
software errors discovered in each testing interval.

D-7.3.2. NPIMDD P . NPIMD prpts consist of description and list,
input, and prediction vector creation prompts.

D-7.3.2.1. NPIMD Description and List przpt. NPIMDD prrnpts the user to
see whether he or she wants a list of the model's assumptions and data
requirements. The assumptions listed are those discussed above. The data
requirements of the model are previously input to DATINP.

D-7.3.2.2. NPHIMD D and Prediction Vector Creation Prcurj. The NPIMWD
input prcmpts are exhibited in Figure D-.7. 1. The first praupt lets the user
terminate model execution or specify the method of estimating (i.e., maximum
likelihood or least squares) the model's proportionality constant and the
total number of ertors in the software. The second prampt allows the user to
enter an initial estimate for the model's proportionality constant. A number
between 0 and 1 must be chosen to guarantee convergence of the solution. It
is recumended that the user choose a small number first, say 0.05 or 0.1, and

D-17

PLEASE ENTER 1 FOR MAXIMUM LIKELIHOOD, 2 FOR LEAST SQUARES,

OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY

CONSTANT (A NUMBER BETWEEN ZERO AND ONE).

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., Decenter 1988

Figure D-7. 1. NPIMVD Input Prapts.

then gradually increase it. The last prapt in the first menu lets the user
enter the maximu= number of iterations to use for the estimation method
selected.

The NPIMD prediction vector creation prompts occur later upon successful
convergence Output of the model. Through these prapts, NPIMDD lets the user
cmpute predicted interval error counts.

D-7.4. Model . If the maximum number of iterations is reached before
a solution is found, maximnum iteration output occurs unless a processing error
happens. If the model successfully converges to a solution, the Output seen
in Figure D-7.2 occurs. If maximun likelihood is chosen, then ML estimates
are shown; otherwise, least squares estimates are Output. In either event,
the user is allowed to estimate the number of expcted errors in the next
testing period. Figure D-7.2 shows ensuing output if the user does want an
estimate of the number of expected errors in the next testing period.

D-18

IF THEMAX/MUMLIKEL/HOOD METHOD WAS SELECTED, THEN

ML MODEL ESTIMATES AFTER ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS
WITH APP. 95% C.I. OF (

THE TOTAL NUMBER OF ERRORS IS

WITH APP. 95% C.I. OF (I

ELSE, IF THE LEASTSoUARES METHOD WAS SELECTED, THEN

LS MODEL ESTIMATES AFTER ITERATIONS ARE:

PROPORTIONALITY CONSTANT OF THE MODEL IS

THE TOTAL NUMBER OF ERRORS IS

END IF

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.

THE EXPECTED NUMBER OF ERRORS IS

PLEASE ENTER 1 TO TRY ANOTHER TESTING LENGTH; ELSE ZERO.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., Decenber 1988

Figure D-7.2. NPIMOD Sucessful Convexgence Output.

D-19

D-8. BRO0NS AND MITEY'S MVDL.

D-8. 1. Model DescriPtion. This model actually consists of four ndels each
of which obtains reliability estimates and predictions for interval data.
They were developed by Brooks and Motley of IB4 and include the following:
Bnomial and Poisson Models for a component of a program and Birnial and
Poisson Models for a program. Each of these models accounts for unequal
testing of programs in a given testing period.

D-8.2. Model Assumtions. Each model makes the following assumptions:

a. The software is operated in a way similar to its expected operational
usage.

b. The ratio of the number of errors reintroduced during the software
correction process to the number of errors that are detected is constant.

c. The probability of detecting any error during a given unit interval
of testing is constant for any occasion and independent of error detections.
The constant is denoted as q in the case of the binomial model, and 0 for the
Poisson model.

D-8.3. Model The model inputs include data entered through the
SMERFS DATINP and responses to promts from the SMERFS BAMMDD module.

D-8.3.1. DATINP Inputs. The data input through the SMERFS DATINP module
consists of the lengths of the various testing intervals and the number of
software errors discovered in each testing interval.

D-8.3.2. BAMMOD r . BAMMOD prcipts consist of description and list,
fraction of code under test, extended description and list, input, and
prediction vector creation prcnpts.

D-8.3.2.1. BAMMD Description aid List Prompts and Fraction of Code Under
Test Pro BA D prompts the user to see whether he or she wants a list of
the model's assumptions and data requirements. The assumptions listed are
those discussed above. The data requirements of the model are previously
input to DATINP. In addition, BAMMOD has extended description and list
prczLpts which provide extended descriptions of the Binomial and Poisson
Models. The fraction of code under test prcnpt lets the user campensate for
partial software testing.

D-8.3.2.2. BAHVD Inriut and Prediction Vector Creation r . The BAMMD
input przupts are exhibited in Figure D-8. 1. The first prompt lets the user
select the appropriate model of interest (Binumial or Poisson) or terminate
model execution. The second prompt allows the user to either input or select
an initial estimate for a, the probability of correcting errors without
inserting new ones. If a decision is made to input a, a suggested range is
0.85-0.95 if no prior knowledge is available. In either event, the total
number of errors and the error detection probability are then estimated. The
behavior of the estimation process can be observed by trying both low values,
such as 0.05-0.1, and high values, such as 0.85-0.90 for the error detection

D-20

PLEASE ENTER 1 FOR THE BINOMIAL MODEL, 2 FOR THE POISSON
MODEL, OR 3 TO TERMINATE MODEL EXECUTION.

PLEASE ENTER 1 TO INPUT ALPHA (THE PROBABILITY OF
CORRECTING ERRORS IN THE PROGRAM WITHOUT INSERTING
NEW ERRORS), OR 2 TO ESTIMATE ALPHA.

IFALPHA IS TO BEINPU, THEN.'

PLEASE ENTER THE DESIRED ALPHA.

PLEASE ENTER INITIAL ESTIMATES FOR THE TOTAL NUMBER
OF ERRORS AND THE ERROR DETECTION PROBABILITY.

ELSE, IFALPHA IS TO BEESTIMA TE, THEN"

PLEASE ENTER INITIAL ESTIMATES FOR THE TOTAL NUMBER
OF ERRORS, THE ERROR DETECTION PROBABILITY, AND
ALPHA.

END IF

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-8.1. BAMM Inrput Praq~s.

probability. The last prompt lets the user enter the maxinum number of
convergence iterations to use for the maximu likelihood estimation method of
caputing the model parameters.

The BAMD prediction vector creation prompts occur later upon successful
convergence output of the model. Through these prcmpts, BAMMDD lets the user
ccupute predicted interval error counts.

D-21

D-8.4. Model z . If the maximum number of iterations is reached before
a solution is found, maxinum iteration output occurs unless a processing error
happens. If the model successfully converges to a solution, the output seen
in Figure D-8.2 occurs. BANMD solutions are based upon maximum likelihood
estimates. The last estimate in the figure will be listed only if the user
selected alpha estimation. Observing the lower portion of the figure, one may
see that SMRES allows for the optional prediction of errors in the next
testing period.

D-22

THE MODELWITH ESTIMATES, AFTER INTERATIONS
ARE:
PROBABILITY OF DETECTING ERRORS
THE TOTAL NUMBER OF ERRORS IS

IFALP HA WAS ESTIMA TED, THEN.

PROB. OF CORRECTING ERRORS WITHOUT ERROR

END/F

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD.

ENTER THE FRACTION OF THE PROGRAM TO BE TESTED
(FOR FULL PROGRAM, ENTER A 1).

HOW MANY ERRORS HAVE BEEN FOUND TO DATE IN THE SECTION
OF THE CODE TO BE TESTED.

THE EXPECTED NUMBER OF ERRORS IS

PLEASE ENTER 1 TO TRY ANOTHER TESTING LENGTH; ELSE ZERO.

Source: NSW TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-8.2. BM= Sucssful Convergence output.

D-23

D-9. NOHW SOMI'DEIND IS MODEL.

D-9. 1. Model Description. This model is another one of the four models
within SMERFS that obtains reliability estimates and predictions for interval
data. It was developed by Norman Schneidewind. The model theorizes that
recent error counts are generally more useful than earlier ones when
predicting future error counts because the error detection process changes as
testing progresses over time. The model employs three approaches in utilizing
error count data:

a. Use all error counts for all m intervals of testing.

b. Ccmpletely ignore error counts from the first s - 1 intervals of
testing where 2 < s < m. Only data from intervals s through m are considered.

c. For intervals 1 through s - 1 use the cumulative error count. For
interval s through m, use the individual error counts.

D-9.2 Model Assumptions. This model makes the following assumptions:

a. The software is operated in a way similar to the way it is expected
to be used.

b. All errors are Independent and occur with equal prbability.

c. The ratio of the error corretion rate to the number of errors to be
corrected is constant.

d. As testing progresses, the mean number of errors that are detected
decreases fron one interval to the next.

e. The length of each testing period is of the same duration.

f. At the time of the test, the ratio of the rate of error detection to
the number of errors within the program is constant. The process of error
detection follows a non-hmogeneous Poisson process where the error detection
rate decreases exponentially.

D-9.3. Model . The model hints, include data entered thmugh the
SMERFS DATINP and responses to praupts from the SMERFS SDtMD module.

D-9.3. 1. DAM P The data input thrugh the SMERFS DATINP consists of
the number of software errors discovered in each testing interval.

D-9.3.2. SD9ZOD Pruivts. SDN)D prcmpts consist of description and list,
input, and prediction vector creation prcmpts.

D-9.3.2. 1. SDQMD Description and List a2gztg. SDWMDD prcmpts the user to
see whether he or she wants a list of the model's assumptions and data
re rnts. The assumptions listed are those discussed above. The data
requirements of the model are previously input to [DTINP. The description
prupt also includes a description of the three approaches for utilizing the
error count data. SMERFS refers to these three approaches as the three
treatment types.

D-24

D-9.3.2.2. SDWnD.It and Prediction Vector Creation Prts. The SDWMD
input prompts are exhibited in Figure D-9.1. The first prompt lets the user
terminate model execution or specify one of the three treatment types. If
treatment type is 2 or 3, then the user must also enter the associated value
of s. The user is then proapted for an initial estimate of the P parameter in
the formula for the mean number of errors for the i-th period of testin.
Finally, the user is prcmpted for the maximum number of iterations to use for
the maxinmu likelihood method.

PLEASE ENTER THE DESIRED MODEL TREATMENT NUMBER, OR A 4

TO TERMINATE MODEL EXECUTION.

IF TE 7REA TMENT TPEIS 2 OR 3, TEN-

PLEASE ENTER THE ASSOCIATED VALUE OF S.

END IF

PLEASE ENTER AN INITIAL ESTIMATE FOR THE PARAMETER BETA,

WHERE THE MEAN NUMBER OF ERRORS FOR THE I - TH PERIOD

IS TAKEN AS:
MEAN(I) = ALPHA*(EXP(- BETA(I - 1)) - EXP(- BETA(I)))iBETA.

PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS.

Source: NSWC TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) USER's Guide, Farr, W.H.,
Smith, O.D., Deceber 1988

Figure D-9. 1. SDEWD Input Prompts.

The S*MD prediction vector creation prompts occr later upon successful
convergence output of the model. Through these prampts, SE)DD lets the user
cmpute predicted interval error ounts.

D-9.4. Model * If the maxim= number of iterations is reached before
a solution is found, maxim= iteration output ocors unless a processing error
happens. If the model successfully converges to a solution, the output seen
in Figure D-9.2 occurs. The a and 0 parameters of the error detection rate
formula and the weighted sum of squares between the predicted and observed

D-25

error cunts are output. This latter quantity helps decide which treatment
type is best. Output also includes an estimate of the number of errors
exected in the next testing period and the number of testing periods needed
to discover the next m errors, where M is specified by the user.

TREATMENT MODEL ESTIMATES AFTER ITERATIONS ARE:
BETA
ALPHA

AND THE WEIGHTED SUMS - OF - SQUARES BETWEEN THE PREDICTED
AND OBSERVED ERROR COUNTS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO.

THE EXPECTED NUMBER OF ERRORS IS

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF
TESTING PERIODS NEEDED TO DISCOVER THE NEXT
M ERRORS; ELSE ZERO.

PLEASE ENTER THE VALUE FOR M.

THE EXPECTED NUMBER OF PERIODS IS

PLEASE ENTER 1 TO TRY A DIFFERENT VALUE FOR M;
ELSE ZERO.

*** THE ESTIMATE CANNOT BE MADE FOR THE SPECIFIED M VALUE.

Source: NSW TR 84-373 Revision 1, Statistical Modeling and Estimation of
Reliability Funtions for Software (SMFS) USER's Guide, Farr, W.H.,
Smith, O.D., December 1988

Figure D-9.2. SMD Successful Convergence Output.

D-26

APPENDIX E

GLOSSARY

E-1. SCOPE

The following terms are identified and defined as they are used
thrughout the Software Maturity Model Investigation.

Binomial distribution

A discrete probability function whose terms correspond to successive
terms in the binumial expansion.

C1hi-sauare distribution

A special case of the gamma distribution.

Coefficient of nurtosis

A measure of the perkiness of a distribution. A large coefficient of
kurtosis for a distribution indicates that the values of the distribution are
concentrated near the mean.

Coefficient of Skewness

A measure of the asynmtry of a distribution. A distribution whose
longer tail occurs to the left is said to be skewed to the left, whereas a
distribution whose longer tail occurs to the right is said to be skewed to the
right.

Confidence interval

Specifies a statistical range of values for some parameter. The
parameter being estimated is said to lie within confidence limits which
express the degree of confidence.

Cumulative distribution function

For a random variable X it is the probability that X s x where x is any
real number, such that --w < x <co.

Distribution

A probability function or a cumulative distribution function.

An abbreviation for a function expressed in terms of powers of e, the
base of natural logarithms.

E-1

Expnenial1 disribtion

The distribution of a rardom variable whose corresponding probability
density function is a certain exponential function.

Eogmnt~ial functio
A mathematical function expressed in terms of a power of the base of

natural logarithms, e.

Gama Distribution

A randum variable has the gamma distribution if the probability density
function is a certain complex mathematical function involving the gamma
function.

Gamma Function

A complex mathematical function defined in terms of what is known in
calculus as an integral function.

Geometric Errsion

A geaoetric progression is a sequence of numbers where the ratio of any
given number to the one that precedes is equal to a constant known as the
cammon ratio.

Hazard Pate

The conditional probability that a software failure occurs in an interval
of time given that the software has not failed up to the beginning of that
time interval.

Least Squares Estimation

A method of approximating or fitting data by some mathematical function.
The approximating function is known as the least-squares approximation.

A function f(x) of a single variable x approaches a number L as a limit
if for any positive number e there exists a positive number 6 such that the
absolute value of f(x) - L < e whenever0 < xo < .

Linear function

An algebraic function in which the highest degree term in the variable(s)
is of the first degree.

E-2

Maximtm Likelihood Estimation

A method for estimating parameters of a mathematical function. The
mathematical function is known as the likelihood function. Techniques of
calculus are used to maximize this function for one or more parameters being
determined. A system of simultaneous equations is then solved to determine
the parameters

Mean

The mathematical expectation for a discrete or random variable is
referred to as the mean of that random variable. Often represented by the
Greek letter A.

Mean Time Between Failure

The expected time between one error ccurrence and another.

Mean Time To Revair

The expected time between the ccurrence of an error and its repair.

Nonhaicoeneous Linear Differential Equation

A linear differential equation whose right side is a nonzero function of
the independent variable.

Non-Hatqenecus Poisson Process

A random process (e.g., of software failures) whose value (e.g., time of
occurrence of software failure) at each point in time follows a Poisson
probability distribution that itself varies with time.

A variable or constant which appears in a mathematical expression. The
specific form of the expression is determined by the value of the constant or
variable.

Poisson Distilbuti

A discrete probability distribution whose probability function is a
certain mathematical function discovered by S. D. Poisson in the 19th century.

Prilitv
A measure of the chance that an event will or will not occur. This

measure will always be a number between 0 and 1.

Proabilitv Dnsity Function

A continuous probability function for one or more continuom random
variables.

E-3

Probbilitv Distribution

A probability function.

Probability Functi

A probability function of a single random variable is either discrete or
continuous. In either case it is a nonnegative number. In the discrete case,
the sum of all possible functional values equals 1. In the continuous case,
the imnprqer integral of the function is 1. These ideas are generalized to
two or more randum variables giving us joint probability distributions for the
discrete and continuous cases.

Ouadratic function

An algebraic function possessing quantities of the second degree or less.

Random Variable

A variable, in the mathematical sense, which takes on numerical values
associated with the outcome of a chance experiment.

RemaiM Number of

The number of software errors remaining in a program.

Software Error

A human error which introduces a fault in software.

Software Failure

A deviation of the operation of software from its requirements. It is
caused by a software fault.

Software Fault

A defect in software which causes a software failure to occur when that
software is executed.

Software Maturit

This is defined in AFOTECP 800-2 Volume 1, 1 August 1986, as "a measure
of the software's evolution toward satisfying all documented user
requ~iremnrts. i

Software Performance P ter

An objectively quantifiable measure of an aspect of software behavior.

E-4

Software Oualtv I cato

Accordir to AMC-P 70-14, 30 April 1987, software quality irdicators are
"quality indicators designed for and specifically allied to software
projects." AMC-P 70-14 further defines quality indicators as "process
guidelines in the form of detailed data, derived fram scheduled surveys,
inspections, evaluations, and tests, that provide insight into the condition
of a product or process."

Software Reliability

This is defined in William Farr's survey of software reliability modeling
and estimation as "the proabiity that a given software program will operate
without failure for a specified time in a specified environment."

Standard Deviatio

This is the positive square root of the variance of a random variable.
Often denoted by the Greek letter a.

Time Between Error Ocrrences

This sinply refers to the difference between the points in time at which

errors occur.

Variance

The variance is a measure of the dispersion that values of a randon
variable have about their mean. A small variance indicates a concentration of
values near the mean, whereas a large variance indicates a tendency for values
to be scattered far frcm the mean. The variance is a number that is
nonnegative.

E-5

This Page Intentionally Blank

E-6

APPENDIX F

DISTRIB3UrION

Number
of Copies

Director
U.S. Army Materiel Systems Analysis Activity
ATITN: AMXSY-MP 1
Aberdeen Proving Ground, MD 21005-5071

Ccauxner
U.S. Army Test and Evaluation Comiand
ATIN: AMSTE-EV-S 1
ATIN: AMTE-Tc-M 3
AflN: AMSTE-TIE 6
ATIN: AMSTE-JO 2
Aberdeen Proving Ground, MD 21005-5055

Cammander
Defense Technical Information Center
AXINq: F[AC 2
Cameron Station
Al~exanria, VA 22304-6145

Ccmmnrer
U.S. Army Cold Regions Test Center
ATIN: STECR-M 1
APO Seattle, WA 98733-5000

Camander
U.S. Army Caoat Systm Test Activity
ATIN: STECS-DA-M 2
Aberdeen Proving Ground, MD 21005-5000

Camnarxer
U.S. Army aigway Proving Ground
ATIN: STEDP-PO-P 1
Dugway, Ur 84022-5000

* cander
U.S. Army Electronic Proving Ground
ATIN: STEEP-TD .
AT7N: STEEP-ET 1
ATIN: STEEP-Dr 1
AT"N: STEE-M 4
Fort Huachuca, AZ 85613-7110

F-I

Number~of Copie

Cmander
U.S. Army Jefferson Proving Ground
ATIN: STEJP-ID-E 1
Madison, IN 47250-5000

ommander
U.S. Army Trcpic Test Center
ATIN: STIC-TD-AB 1
APO Miami, FL 34004-5000

U.S. Army White Sands Missile Range
ATIN: SMTS-TE-A 1
ATIN: STEWS-TE-O 1

ATIN: STrES-'r-PV 4
White Sands Missile Range, NM 88002-5000

Comnrder
U.S. Army Yuma Proving Ground
ATIN: STEYP-MEA 2
Yuma, AZ 85634-5000

F-2

